Microbial fuel cells: A potent and sustainable solution for heavy metal removal
More details
Hide details
1
Department of Molecular Biology and Genetics Istanbul Technical University Maslak, Istanbul 34467, Türkiye
Submission date: 2024-07-19
Final revision date: 2024-09-03
Acceptance date: 2024-09-11
Online publication date: 2024-10-15
Corresponding author
Hakan Bermek
Department of Molecular Biology and Genetics Istanbul Technical University Maslak, Istanbul 34467, Türkiye
KEYWORDS
TOPICS
ABSTRACT
The global water pollution problem is becoming increasingly crucial. One of the major contributors to water pollution is the presence of heavy metals. Heavy metals pose significant threat to both humans and all ecosystems. Various factors influence the removal of heavy metals from wastewater, including pH, temperature, natural organic matter (NOM), and ionic strength, which vary based on the chemical properties of the pollutants. More effective and modern approaches receive attention and extensively researched to substitute traditional methods such as adsorption, membrane filtration, and chemical-based separation. Among these methods, Microbial fuel cells (MFCs) are particularly intriguing. This review article focuses on MFCs and their potential applications in various fields, including clean water production. MFCs represent an innovative technology that not only generates electricity, but also demonstrates significant potential for heavy metal removal from wastewater. Cathodic chamber of MFCs effectively reduces heavy metals, while organic substrates act as carbon and electron donors in the anodic chamber. Through various mechanisms, including direct and indirect metal reduction, biofilm formation (metal sequestering), electron shuttling, and synergistic interactions among microbial communities, microorganisms exhibit remarkable efficiency in removing metals. Studies showed that dual- and single-chamber MFCs could efficiently remove a range of heavy metals, including chromium, cobalt, copper, vanadium, mercury, gold, selenium, lead, magnesium, manganese, zinc, and sodium, while simultaneously generating electricity, achieving high removal efficiencies ranging from 25% to 99.95%. This range of efficiency varies depending on the specific contaminant being targeted, the concentration of the contaminant, as well as the operating conditions such as pH and temperature. Moreover, MFCs demonstrated a wide range of power outputs, typically ranging from 0.15 W/m² to 6.58 W/m², depending on the specific configuration and conditions. These findings underscore the potential of MFCs as a sustainable and efficient approach for both wastewater treatment and energy generation.
ACKNOWLEDGEMENTS
The author would like to express gratitude to all those who contributed to this research directly or indirectly.
FUNDING
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
PEER REVIEW INFORMATION
Article has been screened for originality
Externally peer reviewed.
REFERENCES (125)
1.
Abbas, S. Z., Rafatullah, M., Ismail, N., & Syakir, M. I. (2017). A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: Mechanisms and future prospective. International Journal of Energy Research, 41(9), 1242–1264.
https://doi.org/10.1002/er.370....
2.
Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment. Ain Shams Engineering Journal, 9(4), 3077-3092.
https://doi.org/10.1016/j.asej...
3.
Adekunle, A., Rickwood, C., Tartakovsky, B. (2021). On-line monitoring of water quality with a floating microbial fuel cell biosensor: field test results. Ecotoxicology, 30(5), 851–862.
https://doi.org/10.1007/s10646....
4.
Ajiboye, T. O., Oyewo, O. A., & Onwudiwe, D. C. (2021). Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere, 262, 128379.
https://doi.org/10.1016/j.chem....
5.
Akagündüz, D., Cebecioğlu, R., Özdemir, M., & Catal, T. (2021). Removal of psychoactive pharmaceuticals from wastewaters using microbial electrolysis cells producing hydrogen, Water Science & Technology, 84(4), 931-940.
https://doi.org/10.2166/wst.20....
6.
Akagündüz, D., Cebecioğlu, R., Ozen, F., Ozdemir, M., Bermek, H., Tarhan, N., Arslan, A., Catal, T. (2022). Effects of Psychoactive Pharmaceuticals in Wastewater on Electricity Generation in Microbial Fuel Cells. Clean - Soil, Air, Water, 50(3), 2100027.
https://doi.org/10.1002/clen.2....
7.
Akul, N.B., Cebecioglu, R., Akagunduz, D., Bermek, H., Ozdemir, M., & Catal, T. (2021). Effects of mevastatin on electricity generation in microbial fuel cells. Polish Journal of Environmental Studies, 30(6), 5407-5412.
https://doi.org/10.15244/pjoes....
8.
Arkatkar, A., Mungray, A. K., & Sharma, P. (2021). Study of electrochemical activity zone of Pseudomonas aeruginosa in microbial fuel cell. Process Biochemistry, 101, 213–217.
https://doi.org/10.1016/j.proc....
9.
Arslan, B. A., Akdoğan, E., Cebeci, F. Ç., & Catal, T. (2020). Bioelectricity generation using human neuronal-like cells in single chamber biofuel cells. Journal of Cleaner Production, (271), 122505.
https://doi.org/10.1016/j.jcle....
10.
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in pharmacology, 12, 643972.
https://doi.org/10.3389/fphar.....
11.
Bellona, A. S. (2015). Nanofiltration technology in water treatment and reuse: applications and costs. Water Science & Technology, 309-319.
https://doi.org/10.2166/wst.20....
12.
Bond, D. R., & Lovley, D. R. (2005). Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology, 71(4), 2186–2189.
https://doi.org/10.1128/aem.71....
13.
Borole, A. P., O’Neill, H., Tsouris, C., & Cesar, S. (2008). A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters, 30(8), 1367-1372.
https://doi.org/10.1007/s10529...
14.
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9).
https://doi.org/10.1016/j.heli....
15.
Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., & Liu, H. (2019). Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18(1).
https://doi.org/10.1186/s12934....
16.
Catal, T., Bermek, H., & Liu, H. (2009). Removal of selenite from wastewater using microbial fuel cells. Biotechnology Letters, 31(8), 1211–1216.
https://doi.org/10.1007/s10529....
17.
Catal, T., Kul, A., Atalay, V. E., Bermek, H., Ozilhan, S., & Tarhan, N. (2019). Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. Journal of Power Sources, 414, 1–7.
https://doi.org/10.1016/j.jpow....
18.
Catal, T., Liu, H., Fan, Y., & Bermek, H. (2018b). A clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. Bioresource Technology Reports, 5, 331-334.
https://doi.org/10.1016/j.bite....
19.
Catal, T., Liu, H., Kilinc, B., & Yilancioglu K. (2024). Extracellular polymeric substances in electroactive biofilms play a crucial role in improving the efficiency of microbial fuel and electrolysis cells. Letters in Applied Microbiology, 1;77(3).
https://doi.org/10.1093/lambio....
20.
Catal, T., Yavaser, S., Enisoglu-Atalay, V., Bermek, H., & Ozilhan, S. (2018a). Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresource Technology, (268), 116-120.
https://doi.org/10.1016/j.bior....
21.
Cebecioğlu R. E., Akagündüz, D., Bermek, H., Atalay, V. E., Catal, T. (2022). Decolorization mecha nisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production, Main Group Chemistry, 1-13.
https://doi.org/10.3233/MGC-21....
22.
Chen, H., Zhao, J., Dai, G., Wu, J., & Yan, H., (2010). Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination 262, 174e182.
https://doi.org/10.1016/j.desa....
23.
Choi, C., & Hu, N. (2013). The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresource Technology, 133, 589-598.
https://doi.org/10.1016/j.bior....
24.
Corbella, C., Hartl, M., Fernandez Gatell, M., & Puigagut, J. (2019). MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Science Total Environment, 10(660), 218-226.
https://doi.org/10.1016/j.scit....
27.
Dai, H. N., Nguyen, T.-A. D., Le, L.-P. M., Tran, M. V., Lan, T.-H., & Wang, C.T. (2021). Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent. International Journal of Hydrogen Energy, 46(31), 16612-16621.
https://doi.org/10.1016/j.ijhy....
28.
Du, Z., Li, H., & Gu, T. (2007). A state-of-the-art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.
https://doi.org/10.1016/j.biot....
30.
Fan, Y., Janicek, A., & Liu, H. (2024). Stable and high voltage and power output of CEA-MFCs internally connected in series (iCiS-MFC). The European Chemistry and Biotechnology Journal, 1, 47–57.
https://doi.org/10.62063/ecb-1....
31.
Fedorovich, V., Knighton, M. C., Pagaling, E., Ward, F. B., Free, A., & Goryanin, I. (2009). Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Applied and Environmental Microbiology, 75(23), 7326–7334.
https://doi.org/10.1128/AEM.01....
32.
Ferraz, M., & Lourenco, J., (2000). The influence of organic matter content of contaminated soils on the leaching rate of heavy metals. Environ. Prog. 19 (1), 53e58.
https://doi.org/10.1002/ep.670....
33.
Garud, R. M., Kore, S. V., Kore, V. S., & Kulkarni, G. S. (2011). A Short Review on Process and Applications of Reverse Osmosis. Universal Journal of Environmental Research & Technology, 1(3).
34.
Gharai, M., & Venugopal, R. (2016). Modeling of flotation process—An overview of different approaches. Mineral Processing and Extractive Metallurgy Review, 37(2), 120-133.
https://doi.org/10.1080/088275....
35.
Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2018). Clay mineral adsorbents for heavy metal removal from wastewater: A Review. Environmental Chemistry Letters, 17(2), 629–654.
https://doi.org/10.1007/s10311....
36.
Guo, Y., Wang, J., Shinde, S., Wang, X., Li, Y., Dai, Y., Ren, J., Zhang P., & Liu, X. (2020). Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Advances, 10(43), 25874–25887.
https://10.1039/d0ra05234e
37.
Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, 10(7), 146.
https://doi.org/10.3390/membra....
38.
Hakami, M. W., Alkhudhiri, A., Al-Batty, S., Zacharof, M.-P., Maddy, J., & Hilal, N. (2020). Ceramic microfiltration membranes in wastewater treatment: Filtration behavior, fouling and prevention. Membranes, 10(9), 248.
https://doi.org/10.3390/membra....
39.
Heijne, A. T., Liu, F., Weijden, R. van, Weijma, J., Buisman, C. J. N., & Hamelers, H. V. M. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science Technology, 44(11), 4376–4381.
https://doi.org/10.1021/es1005....
40.
Ho, Y. C., Chua, S. C., & Chong, F. K. (2020). Coagulation-flocculation technology in water and wastewater treatment. Handbook of Research on Resource Management for Pollution and Waste Treatment. 432-457.
https://doi.org/10.4018/978-1-....
41.
Holmes, D. E., Nicoll, J. S., Bond, D. R., & Lovley, D. R. (2004). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology, 70(10), 6023–6030.
https://doi.org/10.1128/AEM.70....
42.
Huang, L., Li, T., Liu, C., Quan, X., Chen, L., Wang, A., & Chen, G. (2013). Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology, 128, 539-546.
https://doi.org/10.1016/j.bior....
43.
Jadhav, D. A., Mungray, A. K., Arkatkar, A., & Kumar, S. S. (2021). Recent advancement in scaling-up applications of microbial fuel cells: From reality to practicability. Sustainable Energy Technologies and Assessments, 45, 101226.
https://10.1016/j.seta.2021.10...
44.
Jatoi, A. S., Akhter, F., Mazari, S. A., Sabzoi, N., Aziz, S., Soomro, S. A., Mujawar Mubarak, N., Baloch, H., Memon, A. Q., & Ahmed, S. (2020). Advanced microbial fuel cell for wastewater treatment—a review. Environmental Science and Pollution Research, 28, 5005–5019.
https://doi.org/10.1007/s11356....
45.
Joseph, L., Jun, B. M., Flora, J. R., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142-159.
https://doi.org/10.1016/j.chem....
46.
Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120.
https://doi.org/10.1016/j.egyp....
47.
Kilinc, B. & Catal T. (2023). A Novel Microbial Fuel Cell for the Sensing of Sodium Acetate in Soil Polish Journal of Environmental Studies, 32 (5), 4931-4936.
https://doi.org/10.15244/pjoes....
48.
Kumar, A. S. K., Jiang, S. J., & Tseng, W. L. (2015). Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry A, 3(13), 7044-7057.
https://doi.org/10.1039/C4TA06....
49.
Kumpulainen, S., von der Kammer, F., & Hofmann, T. (2008). Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Research, 42(8-9), 2051-2060.
https://doi.org/10.1016/j.watr....
50.
Kuntke, P., Zamora, P., Saakes, M., Buisman, C., & Hamelers, H. (2016). Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems. Environmental Science: Water Research & Technology, 2(2), 261-265.
https://doi.org/10.1039/C5EW00....
51.
Lee, D. J., Chang, J. S., & Lai, J. Y. (2015). Microalgae-microbial fuel cell: A mini review. Bioresource Technology, (198), 891-895.
https://doi.org/10.1016/j.bior....
52.
Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 370(1–2), 1–22.
https://doi.org/10.1016/j.mems....
53.
Li, F., Yin, C., Sun, L., Li, Y., Guo, X., & Song, H. (2017). Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnology Journal, 13(5), 1700491.
https://doi.org/10.1002/biot.2....
54.
Li, S.-W., He, H., Zeng, R. J., & Sheng, G.-P. (2017). Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere, 168, 293–299.
https://doi.org/10.1016/j.chem...
55.
Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (II), Zinc (II) and Mercury (II) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366.
https://doi.org/10.1016/j.ecoe....
56.
Lin, L., Yang, H., & Xu, X. (2022). Effects of water pollution on human health and disease heterogeneity: a review. Frontiers in Environmental Science, 10:880246.
https://doi.org/10.3389/fenvs.....
57.
Liu, H., Yang, G., Jia, H., & Sun, B. (2022). Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 isolated from an oil-contaminated lake wetland. Processes, 10(2), 307.
https://doi.org/10.3390/pr1002....
58.
Liu, L., Lee, D.J., Wang, A., Ren, N., Su, A., & Lai, J.Y. (2016). Isolation of Fe(III)-reducing bacterium, Citrobacter sp. LAR-1, for startup of microbial fuel cell. International Journal of Hydrogen Energy, 41(7), 4498-4503.
https://doi.org/10.1016/j.ijhy....
59.
Liu, Z., Lian, J., Du, Z., & Li, H. (2006). Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chinese Journal of Biotechnology, 22(1), 131–137.
https://doi.org/10.1016/s1872-....
60.
Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A.-E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: The microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology, 59, 1-100.
https://doi.org/10.1016/B978-0...
62.
Marshall, C. W., & May, H. D. (2009). Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy & Environmental Science, 2(7), 699-705.
https://doi.org/10.1039/B82323....
63.
Mehtaa, D. S. M. (2015). Magnetic adsorbents for the treatment of water/wastewater-A review. Journal of Water Process Engineering, 244-265.
https://doi.org/10.1016/j.jwpe....
64.
Mondal, S., & Wickramasinghe, S. R. (2008). Produced water treatment by nanofiltration and reverse osmosis membranes. Journal of membrane science, 322(1), 162-170.
https://doi.org/10.1016/j.mems....
65.
Moussavi, G., & Barikbin, B. (2010). Biosorption of chromium(vi) from industrial wastewater onto pistachio hull waste biomass. Chemical Engineering Journal, 162(3), 893–900.
https://doi.org/10.1016/j.cej.....
66.
Munoz-Cupa, C., & Bassi, A. (2024). Investigation of heavy metal removal from salty wastewater and voltage production using Shewanella oneidensis MR-1 nanowires in a dual-chamber microbial fuel cell. Environmental Progress & Sustainable Energy, 43(1), e14237.
https://doi.org/10.1002/ep.142....
67.
Murray, K. S., Rogers, D. T., & Kaufman, M. M. (2004). Heavy metals in an urban watershed in southeastern Michigan. Journal of Environmental Quality, 33(1), 163–172.
https://doi.org/10.2134/jeq200....
68.
Muruganandam, L., Saravana Kumar, M. P., Jena, A., Gulla, S., & Godhwani, B. (2017). Treatment of waste water by coagulation and flocculation using biomaterials. IOP Conference Series:Materials Science and Engineering, 263, 032006.
https://doi.org/10.1088/1757-8....
69.
Naha, A., Debroy, R., Sharma, D., Shah, M. P., & Nath, S. (2023). Microbial fuel cell: A state-of-the art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050.
https://doi.org/10.1016/j.clcb....
70.
Nascimento, M., Rodrigues, J., Matias, R., & Jordao, L. (2024). Aeromonas spp. in freshwater bodies: Antimicrobial resistance and biofilm assembly. Antibiotics, 13(2), 166.
https://doi.org/10.3390/antibi....
71.
Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P., Woodard, T. L., Orloff, A. L., Jia, M., Zhang, M., & Lovley, D. R. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental Microbiology, 10(10), 2505–2514.
https://doi.org/10.1111/j.1462....
72.
Noori, M. T., Thatikayala, D., Pant, D., & Min, B. (2022). A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. Bioresource Technology, 347:126589.
https://doi.org/10.1016/j.bior....
73.
Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., & Levin, E.D. (2009). The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35(6), 971e986.
https://doi.org/10.1016/j.envi....
74.
Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14(5), 10197-10228.
https://doi.org/10.3390/ijms14....
75.
Ozdemir, M., Enisoglu-Atalay, V., Bermek, H., Ozilhan, S., Tarhan, N., & Catal, T. (2019). Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresource Technology Reports, 5, 121-126.
https://doi.org/10.1016/j.bite....
76.
Padmanabhan, S., Yadavar, K. R., Muthaiah, M., & Muthukumar, A. (2023). Identification of predominant bacterial species involved in microbial fuel cell assisted electricity generation using fish market wastewater. Cleaner and Circular Bioeconomy, 6, 100051.
https://doi.org/10.1016/j.clcb....
77.
Pandit, A. B., & Kumar, J. K. (2015). Clean Water for Developing Countries. Annual Review of Chemical and Biomolecular Engineering, 6(1), 217–246.
https://doi.org/10.1146/annure....
78.
Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533-1543.
https://doi.org/10.1016/j.bior....
79.
Pantsar-Kallio, M., Reinikainen, S.P., & Oksanen, M. (2001). Interactions of soil components and their effects on speciation of chromium in soils. Analytica Chimica Acta, 439(1), 9–17.
https://doi.org/10.1016/S0003-....
80.
Park, Y. H., Park, E., & Smith, G. (2019). Energy harvesting using exoelectrogenic Shewanella oneidensis bacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3879-3886.
https://doi.org/10.1080/155670...
81.
Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Ścibisz, I. (2018). Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(2), 515-538.
https://doi.org/10.1007/s00253...
82.
Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 1-15.
https://doi.org/10.1038/s41545....
83.
Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer. Applied and Environmental Microbiology, 70(9), 5373–5382.
https://doi.org/10.1128/aem.70....
84.
Rabaey, K., Rodríguez, J., Blackall, L. L., Keller, J., Gross, P., Batstone, D., Verstraete, W., & Nealson, K. H. (2007). Microbial Ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, 1(1), 9–18.
https://doi.org/10.1038/ismej.....
85.
Ramakrishnaiah, C. R., & Prathima, B. (2012). Hexavalent chromium removal from industrial wastewater by chemical precipitation method. International Journal of Engineering Research and Applications, 2(2), 599-603.
86.
Reiche, A., Sivell, J., & Kirkwood, K. M. (2015). Electricity generation by Propionibacterium freudenreichii in a mediatorless microbial fuel cell. Biotechnology Letters, 38(1), 51–55.
https://doi.org/10.1007/s10529....
87.
Roy, B., Maitra, D., Sarkar, S., Podder, R., Das, T., Ghosh, J., & Mitra, A. K. (2023). Biofilm and metallothioneins: A dual approach to bioremediate the heavy metal menace. Environmental Quality Management, 33(4), 659–676.
https://doi.org/10.1002/tqem.2....
88.
Ryan, M. P., Sevjahova, L., Gorman, R., & White, S. (2022). The emergence of the genus Comamonas as important opportunistic pathogens. Pathogens, 11(9), 1032.
https://doi.org/10.3390/pathog....
89.
Saravanan, A., Senthil Kumar, P., Srinivasan, S., Jeevanantham, S., Kamalesh, R., & Karishma, S. (2022). Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. Chemosphere, 290, 133295.
https://doi.org/10.1016/j.chem....
90.
Sari, A., & Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 160(2-3), 349-355.
https://doi.org/10.1016/j.jhaz....
91.
Senanu, L. D., Kranjac-Berisavljevic, G., & Cobbina, S. J. (2023). The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology & Innovation, 103005.
https://doi.org/10.1016/j.eti.....
92.
Sharma, P. & Mutnuri, S. (2019). Nutrient recovery and microbial diversity in human urine fed microbial fuel cell. Water Science and Technology, 79(4), 718-730.
https://doi.org/10.2166/wst.20....
93.
Sonmez, E., Avci, B., Mohamed, N., & Bermek, H. (2024). Investigation of performance losses in microbial fuel cells with low platinum loadings on air-cathodes. The European Chemistry and Biotechnology Journal, 1, 11-26.
https://doi.org/10.62063/ecb-1....
95.
Sukkasem, C. (2024). Exploring biofilm-forming bacteria for integration into BioCircuit wastewater treatment. The European Chemistry and Biotechnology Journal, 2, 39–52.
https://doi.org/10.62063/ecb-2....
96.
Sun, M., Mu, Z.-X., Chen, Y.-P., Sheng, G.-P., Liu, X.-W., Chen, Y.-Z., Zhao, Y., Wang, H.-L., Yu, H.Q., Wei, L., & Ma, F. (2009). Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environmental Science & Technology, 43(9), 2941-2947.
https://doi.org/10.1021/es8028...
97.
Tamjidi, S., Esmaeili, H., & Kamyab Moghadas, B. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: A review study. Materials Research Express, 6(10), 102004.
https://doi.org/10.1088/2053-1....
98.
Tao, H. C., Zhang, L. J., Gao, Z. Y., & Wu, W. M. (2011). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102(22), 10334-10339.
https://doi.org/10.1128/AEM.70....
99.
Tchobanoglus, G., Burton, F., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. American Water Works Association. Journal, 95(5), 201.
100.
Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A Review. Separation and Purification Technology, 224, 373–387.
https://doi.org/10.1016/j.sepp....
101.
Van der Bruggen, B. (2015). Advances in electrodialysis for water treatment. In Advances in membrane technologies for water treatment. Woodhead Publishing. 185-203.
https://doi.org/10.1016/B978-1...
102.
Varnava, C. K., Persianis, P., Ieropoulos, I., & Tsipa, A. (2024). Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: Pyocyanin production as electron shuttle. Bioprocess and Biosystems Engineering, 47(4), 903–917.
https://doi.org/10.1007/s00449...
103.
Venkidusamy, K., & Megharaj, M. (2016). A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2 exhibits hydrocarbonoclastic potential in anaerobic environments. Frontiers in Microbiology, 7, 1071.
https://doi.org/10.3389/fmicb.....
104.
Villaescusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38 (4), 9921002.
https://doi.org/10.1016/j.watr....
105.
Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in Soil Environments. Journal of Soil Science and Plant Nutrition, 10(3).
https://doi.org/10.4067/s0718-....
106.
Wang, G., Huang, L., & Zhang, Y. (2008). Microbial fuel cells for cathodic reduction of hexavalent chromium [Cr (VI)] and simultaneous electricity generation. Biotechnology Letters, 30, 19591966.
https://doi.org/10.1007/s10529....
108.
Wang, J., Song, X., Wang, Y., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697-702.
https://doi.org/10.1016/j.bior....
109.
Wang, W., Chen, M., Guo, L., & Wang, W.X. (2017). Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary. Science of The Total Environment, 603-604, 434–444.
https://doi.org/10.1016/j.scit....
110.
Wang, Z., Hu, Y., Dong, Y., Shi, L., & Jiang, Y. (2023). Enhancing electrical outputs of the fuel cells with Geobacter sulfurreducens by overexpressing nanowire proteins. Microbial Biotechnology, 16(3), 534–545.
https://doi.org/10.1111/1751-7....
111.
Wang, Z., Lim, B., & Choi, C. (2011). Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology, 102, 6304-6307.
https://doi.org/10.1016/j.bior....
112.
WHO. (2017). Guidelines for drinking-water quality fourth edition incorporating the first addendum. Who chronicle, 38(4), 104-108.
113.
Xia, J., Duan, Q.Y., Luo, Y., Xie, Z. H., Liu, Z.Y., & Mo, X.G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67.
https://doi.org/10.1016/j.accr....
114.
Xiang, H., Min, X., Tang, C. J., Sillanpää, M., & Zhao, F. (2022). Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering, 49, 103023.
https://doi.org/10.1016/j.jwpe....
115.
Xu, H., Chen, Y., Wen, Q., Lin, C., Gao, H., Qiu, Z., Yang, L., & Pan, X. (2023). The role of binary transition metal Cobalt-Nickel sulfide as an anode catalyst in specifically selection of Desulfuromonas and improved performance of microbial fuel cell. Chemical Engineering Journal, 470, 144163.
https://doi.org/10.1016/j.cej.....
117.
Yang, K., Miao, G., Wu, W., Lin, D., Pan, B., Wu, F., & Xing, B. (2015). Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere, 138, 657-663.
https://doi.org/10.1016/j.chem....
118.
Yang, S., Wu, Y., Aierken, A., Zhang, M., Fang, P., Fan, Y., & Ming, Z. (2016). Mono/ competitive adsorption of arsenic(III) and nickel(II) using modified green tea waste. Journal of the Taiwan Institute of Chemical Engineers, 60, 213-221.
https://doi.org/10.1016/j.jtic....
119.
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from Aqueous Solutions: A critical review. Chemical Engineering Journal, 366, 608–621.
https://doi.org/10.1016/j.cej.....
120.
Yanuka-Golub, K., Reshef, L., Rishpon, J., & Gophna, U. (2020). Specific Desulfuromonas strains can determine startup times of microbial fuel cells. Applied Sciences, 10(23), 8570.
https://doi.org/10.3390/app102....
121.
Zhang, B., Zhao, H., Shi, C., Zhou, S., & Ni, J. (2009). Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 84, 1780-1786.
https://doi.org/10.1002/jctb.2....
122.
Zhang, J., Cao, X., Wang, H., Long, X., & Li, X. (2020). Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell. Ecotoxicology and Environmental Safety, 192, 110314.
https://doi.org/10.1016/j.ecoe....
123.
Zhang, X., Liu, Y., Li, C. (2021).Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell, Environmental Science and Pollution Research, 28(38), 5417054176.
https://doi.org/10.1007/s11356....
124.
Zhang, C., Lu, H., & Hu, Z. (2023). Electricity production by Ochrobactrum-related strain CD-1 and Pb2+ removal in dual-chamber microbial fuel cell. Global NEST Journal, 25(7), 18-24.
https://doi.org/10.30955/gnj.0....
125.
Zhang, P., Liu, Y., Fu, M., Wang, B., Ding, S., Ma, X., Zhang, X., & Shen, Z. (2024). Meta-analysis on the global prevalence of Arcobacter in food-producing animals and humans. One Health Advances, 2, 13.
https://doi.org/10.1186/s44280...