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Abstract

Three-dimensional (3D) printing, a subset of additive manufacturing tech-
nologies, has attracted significant attention from researchers for both 
laboratory-based and on-site prototyping since its widespread adoption. 
Its adaptability and versatility have made it an essential tool across var-
ious disciplines, particularly in biotechnology and bioengineering. While 
conventional manufacturing methods can offer precise material con-
trol and compatibility with biological fluids, they often pose significant 
challenges, such as high costs and the requirement for large, complex 
setups. These constraints limit their accessibility for the experimental 
needs of biotechnology and bioengineering. However, 3D printers, with 
their high adaptability and ability to process a wide range of materials, 
have proven to be remarkably effective in resolving these challenges. 
Their capability to create custom parts and structures while maintaining 
compatibility with biomaterials and fluids has opened new possibilities 
not only in tissue engineering, drug development, and biomedical device 
fabrication, but also across the broader fields of biotechnology, biochem-
istry, and related sciences. When examining the basic concept and de-
velopment timeline of 3D printers, it becomes clear that emerging trends 
in artificial intelligence, robotics, and digitalization are expected to further 
accelerate their integration into real-world applications. These ongoing 
advancements are likely to benefit laboratories and production centers 
involved in biotechnology by speeding up experiments, paving the way 
for rapid production and testing, and making complex biofabrication pro-
cesses more accessible and automated, including in areas like tissue 
engineering and personalized medicine.
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Introduction
Additive manufacturing refers to the process of building a product by adding layers of homogeneous 
or different materials in a numerically controlled and stable manner, ensuring they are mechanically 
bonded and resistant to separation over time. Additive manufacturing, by definition, involves building 
an object by adding material layer by layer during the production process, in contrast to traditional 
(subtractive) manufacturing, which shapes the final product by removing material from larger blocks. 
As a result, one of the primary benefits of additive manufacturing is the significant reduction of waste 
material compared to traditional methods (Monfared et al., 2023; Narsimhachary & Kalyan Phani, 
2024; Zhou et al., 2024). 

The first patent application (stereolithography, SLA) in the field of additive manufacturing was filed 
in 1984 focused on computer-controlled stereolithography (United States Patent No. US4575330A, 
1986). Four years later, the prototype was commercialized, marking a significant milestone in the 
history of AM with the process of solidifying liquid photopolymers using ultraviolet (UV) lasers guided 
by computer-controlled 3D motion mechanisms. Later, Fused Deposition Modeling (FDM or Fused 
Filament Fabrication, FFF) emerged. These techniques rely on combining thermoplastics or materials 
with similar thermal characteristics that are heated to their melting point, extruded into thin layers, 
and solidified through rapid cooling (Choi et al., 2011). 

A pivotal development occurred with the RepRap project (initiated in 2005), which aimed to create 
self-replicating 3D printers capable of manufacturing their own components (Jones et al., 2011). The 
success of the RepRap project led to a rapid expansion of the open-source ecosystem surrounding 
3D printing. The availability of easy-to-print and less hazardous materials like PLA after 2010 made 
printers more accessible, eventually reaching household use. Additionally, the expiration of FDM 
patents in 2009 and SLA patents in 2014 significantly contributed to the growth of makers developing 
3D printers, further accelerating the widespread adoption of technology (United States Patent No. 
US5121329A, 1992; United States Patent No. US4575330A, 1986). Figure 1 presents simplified 
schematics illustrating the FDM and resin-based printing techniques. 

Figure 1.  Simple schematics of  basic 3d pr int ing techniques, A: FDM, 
B: MSLA (Masked Stereol i thography),  C: SLA, D: DLP (Digi ta l  L ight 
Processing)

Table 1 compares various 3D printing methods (excluding bioprinting). FDM is typically favored for 
its affordability and wide range of material options, making it ideal for large prints. Resin-based 
techniques, though more sensitive and expensive, offer higher precision, with MSLA being a more 
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cost-effective alternative. Powder-based methods are faster and more sensitive but tend to be the 
most expensive, especially when combined with metal powder melting. 

Table 1. Comparison of the main features of main 3D printing techniques.

Method Printing principle and materials Resolution Cost

FDM Extrudes various thermoplastic filaments layer by layer Moderate Low

SLA Cures photopolymer liquid resin using UV light Very High Moderate

MSLA  
Cures resin using a masked LCD screen to project 
light

Very High 
Moderate-
Low

SLS (Selective 
Laser Sintering)

Fuses powder material (polymer, metal) using a laser 
layer by layer

High High

DLP Cures resin layers using digital light projection Very High Moderate

MJF  
(Multi Jet Fusion)

Fuses powder layers using fusing and detailing agents 
(PA, TPU) 

High High

EBM (Electron 
Beam Melting) 

Melts metal powder using an electron beam in vacuum High
Very 
High 

In this paper, three-dimensional printing technologies, which are becoming increasingly vital tools in 
bioscience due to the unique advantages they offer, are reviewed under the sorted headings outlined 
in Figure 2.

Figure 2.  Key appl icat ions of  3D pr int ing technologies in bioscience.
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3D printers in microfluidic device manufacturing
Microfluidic devices: The conventional method for producing microfluidic systems typically 
involved several steps, beginning with molding a poly(dimethylsiloxane) (PDMS) substrate using soft 
lithography. Although this method is effective, it requires multiple complex steps, specialized expertise, 
and a well-equipped infrastructure (Bhattacharjee et al., 2016).  Compared to classical methods, 3D 
printing has streamlined the production process by reducing the number of steps and significantly 
lowering costs (Amin et al., 2016). In this field, as well as from a broader perspective, various 3D 
printing techniques can be applied. Resin and inkjet printers excel in precision, while MSLA printers 
offer a balance of accuracy and affordability. On the other hand, FDM printers are more cost-effective 
but are limited by their lower resolution, making them less suitable for applications requiring fine 
details (Waheed et al., 2016). 3D printing has enabled the rapid fabrication of microfluidic devices 
designed for specific applications, particularly in key areas such as biofluid mixing and separation, 
microreactors, and complex organ-on-chip assemblies. Thanks to the open-source nature of 3D 
printers, researchers can accelerate experiments by developing customized software and production 
workflows engineered to meet specific objectives (Y. Zhang et al., 2024). 

Droplet-based microfluidics: 3D printers are successfully employed in droplet-based microfluidics, 
a technology that utilizes various physical actuation methods (e.g., magnetic, ultrasonic, pneumatic, 
thermal) to regulate droplet generation, making it possible to design custom components integrated 
into unified microfluidic devices (Aladese & Jeong, 2021; Moragues et al., 2023). Jiao et al. 
developed a 3D-printed droplet-based microfluidic chip and applied it for PCR detection of miRNA-21 
in cellular samples, demonstrating its utility for sensitive and specific biomarker detection in cancer 
diagnostics (Jiao et al., 2019). Ji et al. developed a customizable microfluidic system using 3D-printed 
components capable of creating emulsion droplets with desired properties (Ji et al., 2018). Nguyen et 
al. demonstrated the production of cell-containing hydrogel microspheres by developing a 3D-printed 
system with an adjustable gap height (Nguyen & Seo, 2022). In one study, the desired surface 
hydrophobicity was adjusted by leveraging 3D printing’s ability to work with various materials (Warr 
et al., 2021). In pharmaceutical research, 3D-printed droplet-based chips play a prominent role in 
drug synthesis, screening, and delivery applications (Trinh et al., 2023). Additionally, the droplet 
microfluidic method has been shown to produce sensors for a wide range of applications by utilizing 
inks with various functions (Zub et al., 2022).

Micromixers: Micromixers are microfluidic devices used in biochemistry, both in the laboratory and 
in the field, for preparing homogeneous mixtures before they proceed, and the use of 3D printing 
for their fabrication has grown in significance (Razavi Bazaz et al., 2024). For example, Borro et 
al. successfully controlled the capacity and size of drug-loaded hydrogels using the micromixer 
they developed(Borro et al., 2019). Lavrentieva et al. utilized 3D-printed micromixers to achieve 
homogeneous mixing of precursors and crosslinkers, enabling the creation of stiffness gradients in 
photoactive hydrogels, an approach often applied in mechanobiology research (Lavrentieva et al., 
2020). Bohr et al. produced nanocomplexes using micromixers they designed, enabling pilot-scale 
production speeds (Bohr et al., 2017). Researchers have designed micromixers that facilitate the 
rapid measurement of various biomarkers using portable biosensor systems (Chan et al., 2016a; 
B. Liu et al., 2022; Plevniak et al., 2016). With rapid prototyping made possible by 3D printers, 
researchers can now conduct production tests of more efficient micromixers through computer 
simulation studies (Ammar et al., 2025; Liao et al., 2025; Z. Wang et al., 2023; Yin et al., 2021). 
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Microseparators: The use of 3D-printed microseparators is common in the separation of biological 
fluids and solids, serving purposes such as sample preparation, filtration, bioproduct purification, 
component separation, reaction setup, impurity removal, and diagnostics (Griffin & Pappas, 2023; 
Marković et al., 2024). In one study, 3D spiral separators were employed for the large-scale separation 
and extraction of stem cells (Ding et al., 2022). In another study, a different spiral design was 
developed to separate mammalian ovarian cells into a continuous flow system by incorporating 3D 
buffers (Enders et al., 2021). Amin et al. developed a portable 3D-printed device for the mass density-
based separation of label-free heterogeneous cell mixtures in real-time continuous flow (Amin et al., 
2017). Yang et al. harnessed the power of transferrin-receptor affinity to isolate cancer cells from 
biopsy fluids by modifying the surface of a 3D-printed device (Yang et al., 2023). Schellenberg et al. 
integrated a 3D-printed microseparator into a bioreactor outlet, eliminating the need for periodically 
replaced membranes and enabling continuous high-yield purification of monoclonal antibodies 
produced by cells (Schellenberg et al., 2023). Syed et al. designed a 3D-printed microcyclone 
separator for efficient and continuous harvesting of microalgae (Syed et al., 2017). With the rise of 
3D printers, the development and testing of complex micromixers has become significantly easier 
(J. Clark et al., 2024; P. Li et al., 2021; Oldach et al., 2024).

Microreactors: Microreactors are all-in-one micro-bioprocessing solutions that garner attention due 
to their efficiency, scalability, and precise control over reaction conditions (Maier et al., 2020; Shrimal 
et al., 2020). Cingesar et al. designed a 3D microreactor and connected it to a microseparator to carry 
out methyl ester conversion under optimal conditions in the production of biodiesel from sunflower oil 
(Cingesar et al., 2025). One of the advantages of microreactors is the large surface area they offer, 
enabled by customizable and printable porosity options, which promotes homogeneous catalytic 
activity in continuous flow systems. Building on this advantage, Baena-Moreno et al. designed a 
system with internal surfaces in a gyroid geometry, which successfully increased the CO2 conversion 
rate by 14% (Baena-Moreno et al., 2021). Alimi et al. similarly utilized a microreactor for flavonoid 
oxidation, significantly enhancing the reaction rate compared to a traditional batch reactor (Alimi et 
al., 2020). Ibáñez-de-Garayo et al. designed a microreactor specifically tailored for photocatalysts by 
creating a multichannel microarray, which evenly distributes light with high transmittance, effectively 
increasing the surface area (Ibáñez-de-Garayo et al., 2023). The advantages of 3D-printed 
microreactors are also leveraged in bioreactors, making them ideal for the cultivation of algae and 
other photosynthetic microorganisms (Castaldello et al., 2019; Podwin & Dziuban, 2017).

Lab-on-chip: Micro total analysis systems (μTAS), also known as lab-on-chips, are microfluidic devices 
typically used for analytical applications. They are created by integrating various functional units, 
such as the mixer, separator, and reactor designs previously mentioned, along with microvalves and 
microconcentrators (Patabadige et al., 2016). In one study, a low-cost flow analyzer for exposome 
determination from soil samples was developed using 3D printing technology (Cocovi-Solberg et al., 
2019). Chiado et al. designed an optical analytical device that enables the detection of protein biomarkers, 
aiding in the early diagnosis of cancer (Chiadò et al., 2020). Adamski et al. developed a 3D-printed chip 
capable of performing DNA gel electrophoresis more cost-effectively and quickly (Adamski et al., 2016). 
3D microchips are well-suited for artificial organ studies. For instance, in one study, an artificial nervous 
system chip was created to investigate viral infections in the nervous system (Johnson et al., 2016). 
Cardiovascular tissues and organs are also the focus of research and study using 3D microchips (Y. S. 
Zhang et al., 2016). Addario et al. designed a chip with the purpose of mimicking kidney tubule segments, 
which was used for in vitro tests related to chronic kidney disease (Addario et al., 2024).
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3D printers in tissue engineering, bioprinting and 
biomedical
Bioprinting: Bioprinting refers to the process of combining biological materials to create structures 
such as tissues, organs, patches, or scaffolds, following principles similar to those of additive 
manufacturing (Mironov et al., 2006). The most notable difference from other 3D printing techniques 
is the use of bioinks as building materials (Decante et al., 2021). These bioinks, typically liquid, 
gel, or composite, are specifically developed to incorporate cells, microorganisms, macromolecules, 
and hormones (Daly et al., 2021). Additionally, bioprinting utilizes print heads such as various 
droplet-based microfluidic systems, pressurized syringe tips, pneumatic, or screw extruders, with 
the screws used to mix the materials for precise biomaterial deposition (Chen et al., 2023). These 
techniques typically require high-end printers, but with the adoption of photopolymer-based bioinks 
and high-resolution, low-cost resin printers, they have become more accessible and widely used 
in many laboratories (Tong et al., 2021).  Unlike other 3D printing techniques, bioprinting can be 
performed directly on living tissues, organisms, or within a viscous medium to apply the bioink without 
disturbance and in a biocompatible manner (Singh et al., 2020). A viscous medium acts as a support 
structure in the technique known as submerged printing (H. Li et al., 2021). Additionally, several 
viscosity-lowering methods are employed to create stable 3D-printed structures while preserving 
biocompatibility (Colosi et al., 2016). 

Tissue engineering and drug delivery: 3D printers are one of the basic tools in tissue engineering, 
as well as regenerative medicine (Bartolo et al., 2022). Whether using gel, solid polymer, or composite 
material, 3D printing is one of the most widely utilized techniques in the production of tissue scaffolds 
(Dutta et al., 2021; Radhakrishnan et al., 2021; Richards et al., 2013; Shao et al., 2019). The scaffold 
must have adjustable biodegradability and porosity, which is why 3D-printed fabrication is ideal, 
as it allows for precise control over these factors due to the wide availability of materials, ensuring 
the scaffold meets the specific requirements for tissue regeneration (An et al., 2015; Stratton et al., 
2016; Wen et al., 2017). With 3D printing, scaffolds can be rapidly produced in geometries tailored 
for clinical applications (Blázquez-Carmona et al., 2021). 3D printers are widely used in cell seeding 
studies due to their ability to work with hydrogels. For instance, Xue et al. produced scaffolds with 
varying hardness by modifying 3D printing parameters, providing physical support for the seeded 
fibroblasts to grow (Xue et al., 2019). Feng et al. achieved uniform and effective cell transplantation 
using a 3D-printed scaffold made from alginate and gelatin (Feng et al., 2020). Similarly, drug-loaded 
tissue treatment patches, often created through 3D printing using biodegradable gels and materials, 
are also widely applied in biomedical treatments (Jang et al., 2021). This approach is also enabling 
personalized treatments (Manousi et al., 2024; Peng et al., 2017). 3D printers are also utilized in the 
production of microneedles, which play a crucial role in drug delivery and portable medical diagnostic 
devices (Detamornrat et al., 2022; Uddin et al., 2020).

Biomedical: 3D printing enables the creation of patient-specific biomedical devices that are ready 
for clinical use, particularly in fields such as orthopedics (Wong, 2016). 3D printers are being used to 
create metal alloy medical nails, wires, drug-loaded implants, and even tiny medical robots (Alam et 
al., 2020; Hari Raj et al., 2023; Honda et al., 2024; Wei et al., 2024; Ye et al., 2020). The use of 3D 
printing has expanded to larger models, such as customized arm and neck splints and braces, offering 
time and labor savings while improving efficiency compared to traditional plaster methods (Ambu et 
al., 2024; Boolos et al., 2022; J. Li & Tanaka, 2018). The use of 3D printers in dental applications 
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has shown successful clinical outcomes and is becoming increasingly widespread as both printer 
and material costs decrease, along with advancements in material research (Anadioti et al., 2020; 
Majeed et al., 2024; Tichá et al., 2024; van Noort, 2012). 3D printers are demonstrating significant 
potential in pharmaceutical drug research, facilitating the discovery of new drugs and enabling more 
personalized approaches to treatment development (Amekyeh et al., 2021; Michalski & Ross, 2014; 
Pugliese et al., 2021). There are also notable applications in otolaryngology, including the creation of 
eardrums and cartilage tissue replacements using 3D printing (Hu et al., 2023; Pugliese et al., 2021). 
3D printers also serve an important role in advancing biomedical studies, particularly involving cell 
culture and cell line growth (Bruno et al., 2019; Herreros-Pomares et al., 2021; Lerman et al., 
2018).

Sensors: The role of 3D printers in biomedical sensor fabrication is also worth mentioning, such 
as a flexible wearable sensor that measures shoulder movement limitations, a piezoelectric insole 
that performs gait analysis, haptic devices that include a soft pressure sensor, and wearable 
biomechanical sensors made of a conductive transparent gel (Dimo et al., 2024; Latsch et al., 2024; 
Ntagios et al., 2020; Zeng et al., 2025).

Analytical applications of 3D printers
Biosensor fabrication: The production of most biosensors involves making functional modifications 
to a substrate material to enable specific biosensing capabilities, often incorporating multiple layers 
that work together to generate an electrically readable or optically visible signal (Katey et al., 2023). 
3D printers are poised to play a significant role in this field due to their ability to work with materials 
that possess a wide range of functional biochemical and physical properties, such as bioinks, as well 
as those exhibiting conductive, magnetic, and optical activities (Byrne et al., 2024). For example, 
Hussaini et al. produced and modified electrodes for dopamine detection using a 3D printer, while 
Tiwari et al. fabricated microporous electrodes with a 3D printer to detect antibiotics in tissue 
scaffolds (Hussaini et al., 2024; Tiwari et al., 2024). Glasco et al. produced the electrodes of a new 
enzyme-free biosensor by 3D printing carbon material (Glasco et al., 2024). In another study, Wang 
et al. utilized a bioreceptor printed with bioink containing liver microtissue cells for the detection of 
deoxynivalenol (N. Wang et al., 2025).

Wearable and portable devices: 3D printers are also employed to create the necessary components 
that enable biosensors to function as portable or wearable devices (Ozer et al., 2022a). Examples 
include the production of microneedles for biomedical sampling, integration of sensor elements into 
compact structures such as specialized equipment like heaters and sampling chambers, and optical 
microfluidic devices that allow colorimetric measurements using a smartphone (Biswas et al., 2024; 
Chan et al., 2016b; Xu et al., 2024). 3D printers also facilitate the in-situ application of biosensors in 
various fields such as environmental monitoring, agriculture, and food safety (Ataei Kachouei et al., 
2025; Ozer et al., 2024; Q. Zhang et al., 2021).

Custom laboratory equipment and educational tools 
produced using 3D printers
3D printed hardware: With the rise of digital manufacturing, also known as 3D printing, synchronized 
with the expansion of the open-source software and hardware ecosystem, researchers have 
increasingly started creating their own devices for both emergencies and regular use (Baden et al., 
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2015; Ozer et al., 2022b). For instance, Behrens et al. fabricated a mini peristaltic pump; Holland et 
al. developed a custom syringe pump; Traciak et al. created a surface tension meter; Pechlivani et 
al. built a bioreactor; Sule et al. designed a centrifuge, Wilson et al. produced a micropipette, and 
Chagas et al. designed a fluorescence microscopy platform (Behrens et al., 2020; Chagas et al., 
2017; Pechlivani et al., 2023; Sule et al., 2019; Traciak et al., 2021; Wilson & Mace, 2017).

3D printing in bioeducation: 3D printing has emerged as a standout tool in bio-related science 
education (bioeducation), offering innovative and interactive real-world objects that enhance 
students’ understanding of the educational curriculum. For example, Gul et al. conducted a controlled 
educational experiment by creating 3D models of biomolecules in living organisms, revealing a clear 
difference in student comprehension (Gul & Yalinkilic, 2025). Lim et al. incorporated 3D printed 
models in anatomy lectures (Lim et al., 2016), while Augusto et al. used them in a cell biology course 
(Augusto et al., 2016). Boll et al. highlighted the usefulness of 3D models in synthetic biology within 
STEM education (Oss Boll et al., 2023). Pinger et al. have highlighted the superior role of 3D printers 
in chemistry education (Pinger et al., 2020), and similarly, Renner et al. utilized 3D microfluidics in 
teaching continuous flow reactors and photoreactions (Renner & Griesbeck, 2020).

Challenges and limitations in using 3D printers
Despite the unique advantages, the use of 3D printers in biosciences also presents some limitations 
depending on the method applied. For example, in FDM printers, gaps may form between layers due to the 
way molten material is extruded and shaped. Although these gaps are typically smaller than 0.1 mm and 
not large enough to support biofilm formation, water molecules or chemical and biological contaminants 
can adhere to them (Aguado-Maestro et al., 2021). This makes it difficult to fully clean the printed object, 
especially between the layers. Post-printing surface finishing modifications, such as polishing, can help 
eliminate these gaps and improve the structure’s suitability for bioscience applications. Notably, resin-
based printers tend to exhibit fewer issues with interlayer gaps, offering a potential advantage in this 
regard. Additionally, high-temperature sterilization methods are often unsuitable for FDM-printed objects, 
necessitating the use of alternative sterilization techniques (Wiseman et al., 2022).

Another significant challenge is cost. While metal 3D printers used in biomedical and dental 
applications offer advantages over traditional manufacturing methods, they remain relatively 
expensive to acquire and operate. Additionally, although common materials and consumables used 
in 3D printing are generally affordable, specialized materials with advanced properties—such as 
high electrical conductivity, transparency, UV resistance, or a high Young’s modulus or elasticity 
coefficient—come at a much higher cost. This can limit the accessibility of advanced applications and 
increase the overall expense of research or production on specific bio-applications (Lee et al., 2017; 
B. Li et al., 2023; Ma et al., 2023; Sachyani Keneth et al., 2021).

PLA, one of the most widely used materials in FDM printers, is typically derived from corn syrup 
and is biodegradable under controlled conditions. However, it does not break down as easily in 
natural environments as other biodegradable polymers like PCL (polycaprolactone) or PVA (polyvinyl 
alcohol). To address this, increasing attention is being given to materials enhanced with additives 
such as cellulose and lignin, which offer improved biodegradability and sustainability (Choe et al., 
2022). In resin-based printers, the trend is shifting toward the use of bio-based photopolymers, which 
are gaining popularity for their environmentally friendly properties and compatibility with biological 
applications (Skliutas et al., 2020; Voet et al., 2021).
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It is well-documented that mechanically formed microplastic particles can be dispersed into the air 
during the FDM printing process. However, when using PLA, this does not pose a significant health risk 
in spaces with normal ventilation. In contrast, materials like ABS release toxic fumes when subjected 
to high temperatures, making proper ventilation an absolute necessity (Gu et al., 2019; Salthammer, 
2022). Similarly, resin printers emit harmful gases, including volatile organic compounds, during 
the printing process. To address this, many are equipped with HEPA and activated carbon filters to 
reduce emissions and improve safety during operation (Davis et al., 2019; Garcia-Gonzalez et al., 
2024). Another consideration with resin printing is the need for post-processing, including additional 
curing and washing of the printed objects. The washing process typically involves ethyl alcohol, 
which can be hazardous if not handled properly. To address this, water-washable, bio-based resins 
are increasingly being used as a safer and more eco-friendly alternative (Y. Liu et al., 2024).

Conclusions
3D printers have attracted significant interest from the scientific community since they became widespread. 
The inherent precision of common 3D printing techniques and the variety of materials available, including 
biomaterials, have allowed them to quickly find a place in the field of bioengineering. In today’s open-
source digital era, biological products and related components within the biotechnology ecosystem—
such as reactors, sensors, microfluidics, wearable devices, implants, and prostheses—are increasingly 
benefiting from the advantages of computerization thanks to 3D printing technology. With this unique 
output, researchers are exploring the vast potential of 3D printers across various fields, ranging from 
education to the synthesis of basic biochemical molecules. As they integrate new material handling 
techniques into their work, researchers are uncovering novel ways to enhance productivity, reduce 
research costs, and increase innovation and precision in bioengineering applications.
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