BIOTECHNOLOGY & APPLIED MICROBIOLOGY / REVIEW
 
HIGHLIGHTS
  • The role of 3D printing in biosciences is examined.
  • The unique benefits of the 3D printing method are explained.
  • Various applications in bioengineering-related disciplines are presented.
KEYWORDS
TOPICS
ABSTRACT
Three-dimensional (3D) printing, a subset of additive manufacturing technologies, has attracted significant attention from researchers for both laboratory-based and on-site prototyping since its widespread adoption. Its adaptability and versatility have made it an essential tool across various disciplines, particularly in biotechnology and bioengineering. While conventional manufacturing methods can offer precise material control and compatibility with biological fluids, they often pose significant challenges, such as high costs and the requirement for large, complex setups. These constraints limit their accessibility for experimental needs of biotechnology and bioengineering. However, 3D printers, with their high adaptability and ability to process a wide range of materials, have proven to be remarkably effective in resolving these challenges. Their capability to create custom parts and structures while maintaining compatibility with biomaterials and fluids has opened new possibilities not only in tissue engineering, drug development, and biomedical device fabrication but also across the broader fields of biotechnology, biochemistry, and related sciences. When examining the basic concept and development timeline of 3D printers, it becomes clear that emerging trends in artificial intelligence, robotics, and digitalization are expected to further accelerate their integration into real-world applications. These ongoing advancements are likely to benefit laboratories and production centers involved in biotechnology by speeding up experiments, paving the way for rapid production and testing, and making complex biofabrication processes more accessible and automated, including in areas like tissue engineering and personalized medicine.
ACKNOWLEDGEMENTS
None.
FUNDING
None.
CONFLICT OF INTEREST
The author declares no conflict of interest.
PEER REVIEW INFORMATION
Article has been screened for originality
Externally peer reviewed.
REFERENCES (143)
1.
Adamski, K., Kubicki, W., & Walczak, R. (2016). 3D Printed Electrophoretic Lab-on-chip for DNA Separation. Procedia Engineering, 168, 1454–1457. https://doi.org/10.1016/j.proe....
 
2.
Addario, G., Eussen, D., Djudjaj, S., Boor, P., Moroni, L., & Mota, C. (2024). 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromolecular Bioscience, 24(5), 2300440. https://doi.org/10.1002/mabi.2....
 
3.
Aguado-Maestro, I., De Frutos-Serna, M., González-Nava, A., Merino-De Santos, A. B., & García Alonso, M. (2021). Are the common sterilization methods completely effective for our in-house 3D printed biomodels and surgical guides? Injury, 52(6), 1341–1345. https://doi.org/10.1016/j.inju....
 
4.
Aladese, A. D., & Jeong, H.H. (2021). Recent Developments in 3D Printing of Droplet-Based Microfluidics. BioChip Journal, 15(4), 313–333. https://doi.org/10.1007/s13206....
 
5.
Alam, F., Shukla, V. R., Varadarajan, K. M., & Kumar, S. (2020). Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103576. https://doi.org/10.1016/j.jmbb....
 
6.
Alimi, O. A., Akinnawo, C. A., Onisuru, O. R., & Meijboom, R. (2020). 3-D printed microreactor for continuous flow oxidation of a flavonoid. Journal of Flow Chemistry, 10(3), 517–531. https://doi.org/10.1007/s41981....
 
7.
Ambu, R., Oliveri, S. M., & Calì, M. (2024). Neck orthosis design for 3D printing with user enhanced comfort features. International Journal on Interactive Design and Manufacturing (IJIDeM), 18(8), 6055–6068. https://doi.org/10.1007/s12008....
 
8.
Amekyeh, H., Tarlochan, F., & Billa, N. (2021). Practicality of 3D Printed Personalized Medicines in Therapeutics. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.....
 
9.
Amin, R., Knowlton, S., Dupont, J., Bergholz, J. S., Joshi, A., Hart, A., Yenilmez, B., Yu, C.H., Wentworth, A., Zhao, J.J., & Tasoglu, S. (2017). 3D-Printed Smartphone-Based Device for Label-Free Cell Separation. Journal of 3D Printing in Medicine, 1(3), 155–164. https://doi.org/10.2217/3dp-20....
 
10.
Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., & Tasoglu, S. (2016). 3D-printed microfluidic devices. Biofabrication, 8(2), 022001. https://doi.org/10.1088/1758-5....
 
11.
Ammar, H., Zoghbi, B. E., Faraj, J., & Khaled, M. (2025). Enhanced micromixer designs for chemical applications – Numerical simulations and analysis. Chemical Engineering and Processing - Process Intensification, 208, 110098. https://doi.org/10.1016/j.cep.....
 
12.
An, J., Teoh, J. E. M., Suntornnond, R., & Chua, C. K. (2015). Design and 3D Printing of Scaffolds and Tissues. Engineering, 1(2), 261–268. https://doi.org/10.15302/J-ENG....
 
13.
Anadioti, E., Musharbash, L., Blatz, M. B., Papavasiliou, G., & Kamposiora, P. (2020). 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health, 20(1), 343. https://doi.org/10.1186/s12903....
 
14.
Ataei Kachouei, M., Parkulo, J., Gerrard, S. D., Fernandes, T., Osorio, J. S., & Ali, M. A. (2025). Attomolar-sensitive milk fever sensor using 3D-printed multiplex sensing structures. Nature Communications, 16(1), 265. https://doi.org/10.1038/s41467....
 
15.
Augusto, I., Monteiro, D., Girard-Dias, W., Santos, T. O. dos, Belmonte, S. L. R., Oliveira, J. P. de, Mauad, H., Pacheco, M.D.S. Lenz, D., & Guimarães, M. C. C. (2016). Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education. PLOS ONE, 11(8), e0161184. https://doi.org/10.1371/journa... Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., & Euler, T. (2015). Open Labware: 3-D Printing Your Own Lab Equipment. PLOS Biology, 13(3), e1002086. https://doi.org/10.1371/journa....
 
16.
Baena-Moreno, F. M., González-Castaño, M., Navarro de Miguel, J. C., Miah, K. U. M., Ossenbrink, R., Odriozola, J. A., & Arellano-García, H. (2021). Stepping toward Efficient Microreactors for CO2 Methanation: 3D-Printed Gyroid Geometry. ACS Sustainable Chemistry & Engineering, 9(24), 8198–8206. https://doi.org/10.1021/acssus....
 
17.
Bartolo, P., Malshe, A., Ferraris, E., & Koc, B. (2022). 3D bioprinting: Materials, processes, and applications. CIRP Annals, 71(2), 577–597. https://doi.org/10.1016/j.cirp....
 
18.
Behrens, M. R., Fuller, H. C., Swist, E. R., Wu, J., Islam, M. M., Long, Z., Ruder, W.C., & Steward, R. (2020). Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling. Scientific Reports, 10(1), 1543. https://doi.org/10.1038/s41598....
 
19.
Bhattacharjee, N., Urrios, A., Kang, S., & Folch, A. (2016). The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 16(10), 1720–1742. https://doi.org/10.1039/C6LC00....
 
20.
Biswas, A. A., Dhondale, M. R., Agrawal, A. K., Serrano, D. R., Mishra, B., & Kumar, D. (2024). Advancements in microneedle fabrication techniques: Artificial intelligence assisted 3D-printing technology. Drug Delivery and Translational Research, 14(6), 1458–1479. https://doi.org/10.1007/s13346....
 
21.
Blázquez-Carmona, P., Sanz-Herrera, J. A., Martínez-Vázquez, F. J., Domínguez, J., & Reina-Romo, E. (2021). Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. Journal of the Mechanical Behavior of Biomedical Materials, 121, 104613. https://doi.org/10.1016/j.jmbb....
 
22.
Bohr, A., Boetker, J., Wang, Y., Jensen, H., Rantanen, J., & Beck-Broichsitter, M. (2017). High Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers. Journal of Pharmaceutical Sciences, 106(3), 835–842. https://doi.org/10.1016/j.xphs....
 
23.
Boolos, M., Corbin, S., Herrmann, A., & Regez, B. (2022). 3D printed orthotic leg brace with movement assist. Annals of 3D Printed Medicine, 7, 100062. https://doi.org/10.1016/j.stlm....
 
24.
Borro, B. C., Bohr, A., Bucciarelli, S., Boetker, J. P., Foged, C., Rantanen, J., & Malmsten, M. (2019). Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design. Journal of Colloid and Interface Science, 538, 559–568. https://doi.org/10.1016/j.jcis....
 
25.
Bruno, R. D., Reid, J., & Sachs, P. C. (2019). The revolution will be open-source: How 3D bioprinting can change 3D cell culture. Oncotarget, 10(46), 4724–4726. https://doi.org/10.18632/oncot....
 
26.
Byrne, R., Carrico, A., Lettieri, M., Rajan, A. K., Forster, R. J., & Cumba, L. R. (2024). Bioinks and biofabrication techniques for biosensors development: A review. Materials Today Bio, 28, 101185. https://doi.org/10.1016/j.mtbi....
 
27.
Castaldello, C., Sforza, E., Cimetta, E., Morosinotto, T., & Bezzo, F. (2019). Microfluidic Platform for Microalgae Cultivation under Non-limiting CO2 Conditions. Industrial & Engineering Chemistry Research, 58(39), 18036–18045. https://doi.org/10.1021/acs.ie....
 
28.
Chagas, A. M., Prieto-Godino, L. L., Arrenberg, A. B., & Baden, T. (2017). The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLOS Biology, 15(7), e2002702. https://doi.org/10.1371/journa....
 
29.
Chan, H. N., Shu, Y., Xiong, B., Chen, Y., Chen, Y., Tian, Q., Michael, S.A., Shen, B., Wu, H. (2016a). Simple, Cost-Effective 3D Printed Microfluidic Components for Disposable, Point-of-Care Colorimetric Analysis. ACS Sensors, 1(3), 227–234. https://doi.org/10.1021/acssen....
 
30.
Chen, X. B., Fazel Anvari-Yazdi, A., Duan, X., Zimmerling, A., Gharraei, R., Sharma, N. K., Sweilem, S., & Ning, L. (2023). Biomaterials / bioinks and extrusion bioprinting. Bioactive Materials, 28, 511–536. https://doi.org/10.1016/j.bioa....
 
31.
Chiadò, A., Palmara, G., Chiappone, A., Tanzanu, C., Pirri, C. F., Roppolo, I., & Frascella, F. (2020). A modular 3D printed lab-on-a-chip for early cancer detection. Lab on a Chip, 20(3), 665–674. https://doi.org/10.1039/C9LC01....
 
32.
Choe, S., Kim, Y., Park, G., Lee, D. H., Park, J., Mossisa, A. T., Lee, S., & Myung, J. (2022). Biodegradation of 3D-Printed Biodegradable/Non-biodegradable Plastic Blends. ACS Applied Polymer Materials, 4(7), 5077–5090. https://doi.org/10.1021/acsapm....
 
33.
Choi, J.-W., Medina, F., Kim, C., Espalin, D., Rodriguez, D., Stucker, B., & Wicker, R. (2011). Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility. Journal of Materials Processing Technology, 211(3), 424–432. https://doi.org/10.1016/j.jmat....
 
34.
Cingesar, I. K., Marković, M.-P., & Vrsaljko, D. (2025). Integrating 3D printed microreactors and microseparators for efficient biodiesel production. Chemical Engineering and Processing - Process Intensification, 209, 110165. https://doi.org/10.1016/j.cep.....
 
35.
Cocovi-Solberg, D. J., Rosende, M., Michalec, M., & Miró, M. (2019). 3D Printing: The Second Dawn of Lab-On-Valve Fluidic Platforms for Automatic (Bio)Chemical Assays. Analytical Chemistry, 91(1), 1140–1149. https://doi.org/10.1021/acs.an....
 
36.
Colosi, C., Shin, S. R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., Dokmeci, M.R., Dentini, M., & Khademhosseini, A. (2016). Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Advanced Materials, 28(4), 677–684. https://doi.org/10.1002/adma.2....
 
37.
Crump, S. S. (1992). United States Patent No. US5121329A. Retrieved from https://patents.google.com/pat....
 
38.
Daly, A. C., Prendergast, M. E., Hughes, A. J., & Burdick, J. A. (2021). Bioprinting for the Biologist. Cell, 184(1), 18–32. https://doi.org/10.1016/j.cell....
 
39.
Davis, A. Y., Zhang, Q., Wong, J. P. S., Weber, R. J., & Black, M. S. (2019). Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Building and Environment, 160, 106209. https://doi.org/10.1016/j.buil....
 
40.
Decante, G., Costa, J. B., Silva-Correia, J., Collins, M. N., Reis, R. L., & Oliveira, J. M. (2021). Engineering bioinks for 3D bioprinting. Biofabrication, 13(3), 032001. https://doi.org/10.1088/175850....
 
41.
Detamornrat, U., McAlister, E., Hutton, A. R. J., Larrañeta, E., & Donnelly, R. F. (2022). The Role of 3D Printing Technology in Microengineering of Microneedles. Small, 18(18), 2106392. https://doi.org/10.1002/smll.2....
 
42.
Dimo, A., Longo, U. G., Schena, E., & Presti, D. L. (2024). A 3-D-Printed Wearable Sensor Based on Fiber Bragg Gratings for Shoulder Motion Monitoring. IEEE Sensors Journal, 24(10), 1614516152. https://doi.org/10.1109/JSEN.2....
 
43.
Ding, L., Razavi Bazaz, S., Asadniaye Fardjahromi, M., McKinnirey, F., Saputro, B., Banerjee, B., Graham Vesey, G., & Warkiani, M. E. (2022). A modular 3D printed microfluidic system: A potential solution for continuous cell harvesting in large-scale bioprocessing. Bioresources and Bioprocessing, 9(1), 64. https://doi.org/10.1186/s40643....
 
44.
Dutta, S. D., Hexiu, J., Patel, D. K., Ganguly, K., & Lim, K.-T. (2021). 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. International Journal of Biological Macromolecules, 167, 644–658. https://doi.org/10.1016/j.ijbi....
 
45.
Enders, A., Preuss, J.-A., & Bahnemann, J. (2021). 3D Printed Microfluidic Spiral Separation Device for Continuous, Pulsation-Free and Controllable CHO Cell Retention. Micromachines, 12(9), 1060. https://doi.org/10.3390/mi1209....
 
46.
Feng, L., Liang, S., Zhou, Y., Luo, Y., Chen, R., Huang, Y., Chen, Y., Xu, M., & Yao, R. (2020). Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomaterials Science & Engineering, 6(5), 2995–3004. https://doi.org/10.1021/acsbio....
 
47.
Garcia-Gonzalez, H., Lopez-Pola, T., Fernandez-Rubio, P., & Fernandez-Rodriguez, P. (2024). Analysis of Volatile Organic Compound Emissions in 3D Printing: Implications for Indoor Air Quality. Buildings, 14(11), 3343. https://doi.org/10.3390/buildi....
 
48.
Glasco, D. L., Elhassan, M. M., McLeod, W. T., & Bell, J. G. (2024). Nonenzymatic Detection of Glucose Using 3D Printed Carbon Electrodes in Human Saliva. ECS Sensors Plus, 3(2), 020602. https://doi.org/10.1149/2754-2....
 
49.
Griffin, K., & Pappas, D. (2023). 3D printed microfluidics for bioanalysis: A review of recent advancements and applications. TrAC Trends in Analytical Chemistry, 158, 116892. https://doi.org/10.1016/j.trac....
 
50.
Gu, J., Wensing, M., Uhde, E., & Salthammer, T. (2019). Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environment International, 123, 476485. https://doi.org/10.1016/j.envi....
 
51.
Gul, S., & Yalinkilic, F. (2025). Teaching of the subject ‘Biomolecules in Living Organisms’ using 3D printing models. Education and Information Technologies. https://doi.org/10.1007/s10639....
 
52.
Hari Raj, K., Gnanavel, S., & Ramalingam, S. (2023). Investigation of 3D printed biodegradable PLA orthopedic screw and surface modified with nanocomposites (Ti–Zr) for biocompatibility. Ceramics International, 49(5), 7299–7307. https://doi.org/10.1016/j.cera....
 
53.
Herreros-Pomares, A., Zhou, X., Calabuig-Fariñas, S., Lee, S.-J., Torres, S., Esworthy, T., Hann, S.Y., Jantus-Lewintre, E., Camps, C., & Zhang, L. G. (2021). 3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. Materials Science and Engineering: C, 122, 111914. https://doi.org/10.1016/j.msec....
 
54.
Honda, S., Fujibayashi, S., Shimizu, T., Yamaguchi, S., Okuzu, Y., Takaoka, Y., Masuda, S., Takemoto, M., Kawai, T., Otsuki, B., Goto, K., & Matsuda, S. (2024). Strontium-loaded 3D intramedullary nail titanium implant for critical-sized femoral defect in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 112(3), e35393. https://doi.org/10.1002/jbm.b.....
 
55.
Hu, H., Chen, J., Li, S., Xu, T., & Li, Y. (2023). 3D printing technology and applied materials in eardrum regeneration. Journal of Biomaterials Science, Polymer Edition, 34(7), 950–985. https://doi.org/10.1080/092050....
 
56.
Hull, C. W. (1986). United States Patent No. US4575330A. Retrieved from https://patents.google.com/pat....
 
57.
Hussaini, A. A., Sarilmaz, A., Ozel, F., Erdal, M. O., & Yıldırım, M. (2024). CeO2:BaMoO4 nanocomposite based 3D-printed electrodes for electrochemical detection of the dopamine. Materials Science in Semiconductor Processing, 180, 108587. https://doi.org/10.1016/j.mssp....
 
58.
Ibáñez-de-Garayo, A., Imizcoz, M., Maisterra, M., Almazán, F., Sanz, D., Bimbela, F., Cornejo, A., Pellejero, I., & Gandía, L. M. (2023). The 3D-Printing Fabrication of Multichannel Silicone Microreactors for Catalytic Applications. Catalysts, 13(1), 157. https://doi.org/10.3390/catal1....
 
59.
Jang, M. J., Bae, S. K., Jung, Y. S., Kim, J. C., Kim, J. S., Park, S. K., Suh, J.S., Yi, S.J., Ahn, S.H., & Lim, J. O. (2021). Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model. Biomedical Materials, 16(4), 045013. https://doi.org/10.1088/1748-6....
 
60.
J. Clark, M., Garg, T., E. Rankin, K., Bradshaw, D., & M. Nightingale, A. (2024). 3D printed filtration and separation devices with integrated membranes and no post-printing assembly. Reaction Chemistry & Engineering, 9(2), 251–259. https://doi.org/10.1039/D3RE00....
 
61.
Ji, Q., Zhang, J. M., Liu, Y., Li, X., Lv, P., Jin, D., & Duan, H. (2018). A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation. Scientific Reports, 8(1), 4791. https://doi.org/10.1038/s41598....
 
62.
Jiao, Z., Zhao, L., Tang, C., Shi, H., Wang, F., & Hu, B. (2019). Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection. Analytical Methods, 11(26), 3286–3293. https://doi.org/10.1039/C9AY01....
 
63.
Johnson, B. N., Lancaster, K. Z., Hogue, I. B., Meng, F., Kong, Y. L., Enquist, L. W., & McAlpine, M. C. (2016). 3D printed nervous system on a chip. Lab on a Chip, 16(8), 1393–1400. https://doi.org/10.1039/C5LC01....
 
64.
Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., & Bowyer, A. (2011). RepRap – the replicating rapid prototyper. Robotica, 29(1), 177–191. https://doi.org/10.1017/S02635....
 
65.
Katey, B., Voiculescu, I., Penkova, A. N., & Untaroiu, A. (Eds.). (2023). A Review of Biosensors and Their Applications. ASME Open Journal of Engineering, 2(020201). https://doi.org/10.1115/1.4063....
 
66.
Latsch, B., Schäfer, N., Grimmer, M., Dali, O. B., Mohseni, O., Bleichner, N., Altmann, A.A., Schaumann, S., Wolf, S.I., Seyfarth, A., Beckerle, P., & Kupnik, M. (2024). 3D-Printed Piezoelectric PLA-Based Insole for Event Detection in Gait Analysis. IEEE Sensors Journal, 24(16), 26472–26486. https://doi.org/10.1109/JSEN.2....
 
67.
Lavrentieva, A., Fleischhammer, T., Enders, A., Pirmahboub, H., Bahnemann, J., & Pepelanova, I. (2020). Fabrication of Stiffness Gradients of GelMA Hydrogels Using a 3D Printed Micromixer. Macromolecular Bioscience, 20(7), 2000107. https://doi.org/10.1002/mabi.2....
 
68.
Lee, J.-Y., An, J., & Chua, C. K. (2017). Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120–133. https://doi.org/10.1016/j.apmt....
 
69.
Lerman, M. J., Lembong, J., Gillen, G., & Fisher, J. P. (2018). 3D printing in cell culture systems and medical applications. Applied Physics Reviews, 5(4), 041109. https://doi.org/10.1063/1.5046....
 
70.
Li, B., Xue, Z., Jiang, B., Feng, T., Zhang, L., Wang, X., & He, J. (2023). 3D printing of infrared transparent ceramics via material extrusion. Additive Manufacturing, 61, 103364. https://doi.org/10.1016/j.addm....
 
71.
Li, H., Tan, Y. J., Kiran, R., Tor, S. B., & Zhou, K. (2021). Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose. Additive Manufacturing, 37, 101640. https://doi.org/10.1016/j.addm....
 
72.
Li, J., & Tanaka, H. (2018). Rapid customization system for 3D-printed splint using programmable modeling technique – a practical approach. 3D Printing in Medicine, 4(1), 5. https://doi.org/10.1186/s41205....
 
73.
Li, P., Li, M., Yuan, Z., Jiang, X., Yue, D., Ye, B., Zhao, Z., Jiang, J., Fan, Q., Zhou, Z., & Chen, H. (2021). 3D printed integrated separator with hybrid micro-structures for high throughput and magnetic-free nucleic acid separation from organism samples. Separation and Purification Technology, 271, 118881. https://doi.org/10.1016/j.sepp....
 
74.
Liao, Y., Liu, S., Li, X., Feng, G., Xue, W., Li, F., & Zhang, K. (2025). 3D printed kenics static micromixer. Microsystem Technologies, 31(1), 137–145. https://doi.org/10.1007/s00542....
 
75.
Lim, K. H. A., Loo, Z. Y., Goldie, S. J., Adams, J. W., & McMenamin, P. G. (2016). Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anatomical Sciences Education, 9(3), 213–221.https://doi.org/10.1002/ase.15....
 
76.
Liu, B., Ran, B., Chen, C., Shi, L., Liu, Y., Chen, H., & Zhu, Y. (2022). A low-cost and high-performance 3D micromixer over a wide working range and its application for high-sensitivity biomarker detection. Reaction Chemistry & Engineering, 7(11), 2334–2347. https://doi.org/10.1039/D2RE00....
 
77.
Liu, Y., Jin, G., Lim, J.-H., & Kim, J.-E. (2024). Effects of washing agents on the mechanical and biocompatibility properties of water-washable 3D printing crown and bridge resin. Scientific Reports, 14(1), 9909. https://doi.org/10.1038/s41598....
 
78.
Ma, C., Zhu, B., Qian, Z., Ren, L., Yuan, H., & Meng, Y. (2023). 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. Journal of Manufacturing Processes, 87, 1–10. https://doi.org/10.1016/j.jmap....
 
79.
Maier, M. C., Valotta, A., Hiebler, K., Soritz, S., Gavric, K., Grabner, B., & Gruber-Woelfler, H. (2020). 3D Printed Reactors for Synthesis of Active Pharmaceutical Ingredients in Continuous Flow. Organic Process Research & Development, 24(10), 2197–2207. https://doi.org/10.1021/acs.op....
 
80.
Majeed, H. F., Hamad, T. I., & Bairam, L. R. (2024). Enhancing 3D-printed denture base resins: A review of material innovations. Science Progress, 107(3), 00368504241263484. https://doi.org/10.1177/003685....
 
81.
Manousi, E., Chatzitaki, A.-T., Vakirlis, E., Karavasili, C., & Fatouros, D. G. (2024). Development and in vivo evaluation of 3D printed hydrogel patches for personalized cosmetic use based on skin type. Journal of Drug Delivery Science and Technology, 92, 105306. https://doi.org/10.1016/j.jdds....
 
82.
Marković, M.-P., Žižek, K., Soldo, K., Sunko, V., Zrno, J., & Vrsaljko, D. (2024). 3D Printed Microfluidic Separators for Solid/Liquid Suspensions. Applied Sciences, 14(17), 7856. https://doi.org/10.3390/app141....
 
83.
Michalski, M. H., & Ross, J. S. (2014). The Shape of Things to Come: 3D Printing in Medicine. JAMA, 312(21), 2213–2214. https://doi.org/10.1001/jama.2....
 
84.
Mironov, V., Reis, N., & Derby, B. (2006). Review: Bioprinting: A Beginning. Tissue Engineering, 12(4), 631–634. https://doi.org/10.1089/ten.20....
 
85.
Monfared, V., Ramakrishna, S., Nasajpour-Esfahani, N., Toghraie, D., Hekmatifar, M., & Rahmati, S. (2023). Science and Technology of Additive Manufacturing Progress: Processes, Materials, and Applications. Metals and Materials International, 29(12), 3442–3470. https://doi.org/10.1007/s12540....
 
86.
Moragues, T., Arguijo, D., Beneyton, T., Modavi, C., Simutis, K., Abate, A. R., Baret, J.C., deMello, A.J., Densmore, D., & Griffiths, A. D. (2023). Droplet-based microfluidics. Nature Reviews Methods Primers, 3(1), 1–22. https://doi.org/10.1038/s43586....
 
87.
Narsimhachary, D., & Kalyan Phani, M. (2024). Additive Manufacturing: Environmental Impact, and Future Perspective. In S. Rajendrachari (Ed.), Practical Implementations of Additive Manufacturing Technologies (pp. 295–308). Singapore: Springer Nature. https://doi.org/10.1007/978-98....
 
88.
Nguyen, H. Q., & Seo, T. S. (2022). A 3D printed size-tunable flow-focusing droplet microdevice to produce cell-laden hydrogel microspheres. Analytica Chimica Acta, 1192, 339344. https://doi.org/10.1016/j.aca.....
 
89.
Ntagios, M., Nassar, H., Pullanchiyodan, A., Navaraj, W. T., & Dahiya, R. (2020). Robotic Hands with Intrinsic Tactile Sensing via 3D Printed Soft Pressure Sensors. Advanced Intelligent Systems, 2(6), 1900080. https://doi.org/10.1002/aisy.2....
 
90.
Oldach, B., Chiang, Y.-Y., Ben-Achour, L., Chen, T.-J., & Kockmann, N. (2024). Performance of different microfluidic devices in continuous liquid-liquid separation. Journal of Flow Chemistry, 14(3), 547–557. https://doi.org/10.1007/s41981....
 
91.
Oss Boll, H., de Castro Leitão, M., Garay, A. V., Batista, A. C. C., de Resende, S. G., da Silva, L. F., Reis, V.C.B., Vieira, E.M., & Coelho, C. M. (2023). SynBio in 3D: The first synthetic genetic circuit as a 3D printed STEM educational resource. Frontiers in Education, 8. https://doi.org/10.3389/feduc.....
 
92.
Ozer, T., Agir, I., & Borch, T. (2024). Water monitoring with an automated smart sensor supported with solar power for real-time and long range detection of ferrous iron. Analyst, 149(9), 2671–2679.
 
93.
Ozer, T., Agir, I., & Henry, C. S. (2022a). Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care. Sensors and Actuators B: Chemical, 365, 131961.
 
94.
Ozer, T., Agir, I., & Henry, C. S. (2022b). Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot. Talanta, 247, 123544. https://doi.org/10.1016/j.tala....
 
95.
Patabadige, D. E. W., Jia, S., Sibbitts, J., Sadeghi, J., Sellens, K., & Culbertson, C. T. (2016). Micro Total Analysis Systems: Fundamental Advances and Applications. Analytical Chemistry, 88(1), 320–338. https://doi.org/10.1021/acs.an....
 
96.
Pechlivani, E. M., Pemas, S., Kanlis, A., Pechlivani, P., Petrakis, S., Papadimitriou, A., Tzovaras, D., & Hatzistergos, K. E. (2023). Enhanced Growth of Bacterial Cells in a Smart 3D Printed Bioreactor. Micromachines, 14(10), 1829. https://doi.org/10.3390/mi1410....
 
97.
Peng, W., Datta, P., Ayan, B., Ozbolat, V., Sosnoski, D., & Ozbolat, I. T. (2017). 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomaterialia, 57, 26–46. https://doi.org/10.1016/j.actb....
 
98.
Pinger, C. W., Geiger, M. K., & Spence, D. M. (2020). Applications of 3D-Printing for Improving Chemistry Education. Journal of Chemical Education, 97(1), 112–117. https://doi.org/10.1021/acs.jc....
 
99.
Plevniak, K., Campbell, M., Myers, T., Hodges, A., & He, M. (2016). 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia. Biomicrofluidics, 10(5), 054113. https://doi.org/10.1063/1.4964....
 
100.
Podwin, A., & Dziuban, J. A. (2017). Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Journal of Micromechanics and Microengineering, 27(10), 104004. https://doi.org/10.1088/1361-6....
 
101.
Pugliese, R., Beltrami, B., Regondi, S., & Lunetta, C. (2021). Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine, 2, 100011. https://doi.org/10.1016/j.stlm....
 
102.
Radhakrishnan, S., Nagarajan, S., Belaid, H., Farha, C., Iatsunskyi, I., Coy, E., Soussan, L., Huon, V., Bares, J., Belkacemi, K., Teyssier, C., Balme, S., Miele, P., Cornu, D., Kalkura, N., Cavaillès, V., & Bechelany, M. (2021). Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering: C, 118, 111525. https://doi.org/10.1016/j.msec....
 
103.
Razavi Bazaz, S., Sayyah, A., Hazeri, A. H., Salomon, R., Abouei Mehrizi, A., & Ebrahimi Warkiani, M. (2024). Micromixer research trend of active and passive designs. Chemical Engineering Science, 293, 120028. https://doi.org/10.1016/j.ces.....
 
104.
Renner, M., & Griesbeck, A. (2020). Think and Print: 3D Printing of Chemical Experiments. Journal of Chemical Education, 97(10), 3683–3689. https://doi.org/10.1021/acs.jc....
 
105.
Richards, D. J., Tan, Y., Jia, J., Yao, H., & Mei, Y. (2013). 3D Printing for Tissue Engineering. Israel Journal of Chemistry, 53(9–10), 805–814. https://doi.org/10.1002/ijch.2....
 
106.
Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L., & Magdassi, S. (2021). 3D Printing Materials for Soft Robotics. Advanced Materials, 33(19), 2003387. https://doi.org/10.1002/adma.2....
 
107.
Salthammer, T. (2022). Microplastics and their Additives in the Indoor Environment. Angewandte Chemie, 134(32), e202205713. https://doi.org/10.1002/ange.2....
 
108.
Schellenberg, J., Dehne, M., Lange, F., Scheper, T., Solle, D., & Bahnemann, J. (2023). Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control. Bioengineering, 10(6), 656. https://doi.org/10.3390/ A 3D-printed mini-hydrocyclone for high throughput particle separation: Application to primary harvesting of microalgae. Lab on a Chip, 17(14), 2459–2469. https://doi.org/10.1039/C7LC00....
 
109.
Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., & Liu, S. (2019). 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceramics International, 45(1), 1163–1170. https://doi.org/10.1016/j.cera....
 
110.
Shrimal, P., Jadeja, G., & Patel, S. (2020). A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chemical Engineering Research and Design, 153, 728–756. https://doi.org/10.1016/j.cher....
 
111.
Singh, S., Choudhury, D., Yu, F., Mironov, V., & Naing, M. W. (2020). In situ bioprinting – Bioprinting from benchside to bedside? Acta Biomaterialia, 101, 14–25. https://doi.org/10.1016/j.actb....
 
112.
Skliutas, E., Lebedevaite, M., Kasetaite, S., Rekštytė, S., Lileikis, S., Ostrauskaite, J., & Malinauskas, M. (2020). A Bio-Based Resin for a Multi-Scale Optical 3D Printing. Scientific Reports, 10(1), 9758. https://doi.org/10.1038/s41598....
 
113.
Stratton, S., Shelke, N. B., Hoshino, K., Rudraiah, S., & Kumbar, S. G. (2016). Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 1(2), 93–108. https://doi.org/10.1016/j.bioa....
 
114.
Sule, S. S., Petsiuk, A. L., & Pearce, J. M. (2019). Open Source Completely 3-D Printable Centrifuge. Instruments, 3(2), 30. https://doi.org/10.3390/instru....
 
115.
Tichá, D., Tomášik, J., Oravcová, Ľ., & Thurzo, A. (2024). Three-Dimensionally-Printed Polymer and Composite Materials for Dental Applications with Focus on Orthodontics. Polymers, 16(22), 3151. https://doi.org/10.3390/polym1....
 
116.
Tiwari, A. P., Panicker, S. S., Huddy, J. E., Rahman, M. S., Hixon, K. R., & Scheideler, W. J. (2024). Biocompatible 3D Printed MXene Microlattices for Tissue-Integrated Antibiotic Sensing. Advanced Materials Technologies, 9(4), 2301517. https://doi.org/10.1002/admt.2....
 
117.
Tong, A., Pham, Q. L., Abatemarco, P., Mathew, A., Gupta, D., Iyer, S., & Voronov, R. (2021). Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 26(4), 333–366. https://doi.org/10.1177/247263....
 
118.
Traciak, J., Fal, J., & Żyła, G. (2021). 3D printed measuring device for the determination the surface tension of nanofluids. Applied Surface Science, 561, 149878. https://doi.org/10.1016/j.apsu....
 
119.
Trinh, T. N. D., Do, H. D. K., Nam, N. N., Dan, T. T., Trinh, K. T. L., & Lee, N. Y. (2023). Droplet Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals, 16(7), 937. https://doi.org/10.3390/ph1607....
 
120.
Uddin, M. J., Scoutaris, N., Economidou, S. N., Giraud, C., Chowdhry, B. Z., Donnelly, R. F., & Douroumis, D. (2020). 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering: C, 107, 110248. https://doi.org/10.1016/j.msec....
 
121.
van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dent....
 
122.
Voet, V. S. D., Guit, J., & Loos, K. (2021). Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromolecular Rapid Communications, 42(3), 2000475. https://doi.org/10.1002/marc.2....
 
123.
Waheed, S., M. Cabot, J., P. Macdonald, N., Lewis, T., M. Guijt, R., Paull, B., & C. Breadmore, M. (2016). 3D printed microfluidic devices: Enablers and barriers. Lab on a Chip, 16(11), 1993–2013. https://doi.org/10.1039/C6LC00....
 
124.
Wang, N., Hu, W., Jiang, H., Jiang, D., & Wang, L. (2025). A portable micro-nanochannel bio-3D printed liver microtissue biosensor for DON detection. Biosensors and Bioelectronics, 267, 116810. https://doi.org/10.1016/j.bios....
 
125.
Wang, Z., Yan, X., Zhou, Q., Wang, Q., Zhao, D., & Wu, H. (2023). A Directly Moldable, Highly Compact, and Easy-for-Integration 3D Micromixer with Extraordinary Mixing Performance. Analytical Chemistry, 95(23), 8850–8858. https://doi.org/10.1021/acs.an....
 
126.
Warr, C. A., Hinnen, H. S., Avery, S., Cate, R. J., Nordin, G. P., & Pitt, W. G. (2021). 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers. Micromachines, 12(1), 91. https://doi.org/10.3390/mi1201....
 
127.
Wei, K., Tang, C., Ma, H., Fang, X., & Yang, R. (2024). 3D-printed microrobots for biomedical applications. Biomaterials Science, 12(17), 4301–4334. https://doi.org/10.1039/D4BM00....
 
128.
Wen, Y., Xun, S., Haoye, M., Baichuan, S., Peng, C., Xuejian, L., Kaihong, Z., Xuan, Y., Jiang, P., & Shibi, L. (2017). 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomaterials Science, 5(9), 1690–1698. https://doi.org/10.1039/C7BM00....
 
129.
Wilson, D. J., & Mace, C. R. (2017). Reconfigurable Pipet for Customized, Cost-Effective Liquid Handling. Analytical Chemistry, 89(17), 8656–8661. https://doi.org/10.1021/acs.an....
 
130.
Wiseman, J., Rawther, T., Langbart, M., Kernohan, M., & Ngo, Q. (2022). Sterilization of bedside 3D-printed devices for use in the operating room. Annals of 3D Printed Medicine, 5, 100045. https://doi.org/10.1016/j.stlm....
 
131.
Wong, K. C. (2016). 3D-printed patient-specific applications in orthopedics. Orthopedic Research and Reviews, 8(null), 57–66. https://doi.org/10.2147/ORR.S9....
 
132.
Xu, Y., Zhang, Q., Li, Y., Pang, X., & Cheng, N. (2024). A 3D-Printed Integrated Handheld Biosensor for the Detection of Vibrio parahaemolyticus. Foods, 13(11), 1775. https://doi.org/10.3390/foods1....
 
133.
Xue, D., Zhang, J., Wang, Y., & Mei, D. (2019). Digital Light Processing-Based 3D Printing of Cell Seeding Hydrogel Scaffolds with Regionally Varied Stiffness. ACS Biomaterials Science & Engineering, 5(9), 4825–4833. https://doi.org/10.1021/acsbio....
 
134.
Yang, Y., Li, X., & Pappas, D. (2023). Isolation of leukemia and breast cancer cells from liquid biopsies and clinical samples at low concentration in a 3D printed cell separation device via transferrin receptor affinity. Talanta, 253, 124107. https://doi.org/10.1016/j.tala....
 
135.
Ye, J., Wilson, D. A., Tu, Y., & Peng, F. (2020). 3D-Printed Micromotors for Biomedical Applications. Advanced Materials Technologies, 5(11), 2000435. https://doi.org/10.1002/admt.2....
 
136.
Yin, B., Yue, W., Sohan, A. S. M. M. F., Zhou, T., Qian, C., & Wan, X. (2021). Micromixer with Fine Tuned Mathematical Spiral Structures. ACS Omega, 6(45), 30779–30789. https://doi.org/10.1021/acsome....
 
137.
Zeng, L., Wang, J., Duan, L., & Gao, G. (2025). Highly transparent ionogel for wearable force sensor and 3D printing. European Polymer Journal, 223, 113641. https://doi.org/10.1016/j.eurp....
 
138.
Zhang, Q., Wang, W., Yang, Z., Wang, X., Xu, W., Huang, K., Luo, Y., He, X., & Cheng, N. (2021). A portable 3D-printed biosensing device for rapid detection of genetically modified maize MON810. Sensors and Actuators B: Chemical, 349, 130748. https://doi.org/10.1016/j.snb.....
 
139.
Zhang, Y., Li, M., Tseng, T.-M., & Schlichtmann, U. (2024). Open-source interactive design platform for 3D-printed microfluidic devices. Communications Engineering, 3(1), 1–13. https://doi.org/10.1038/s44172....
 
140.
Zhang, Y. S., Arneri, A., Bersini, S., Shin, S.-R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell’Erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M.R., Atala, A., & Khademhosseini, A. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59. https://.
 
141.
doi.org/10.1016/j.biomaterials.2016.09.003.
 
142.
Zhou, L., Miller, J., Vezza, J., Mayster, M., Raffay, M., Justice, Q., Al Tamimi, Z., Hansotte, G., Sunkara, L. D., & Bernat, J. (2024). Additive Manufacturing: A Comprehensive Review. Sensors, 24(9), 2668. https://doi.org/10.3390/s24092....
 
143.
Zub, K., Hoeppener, S., & Schubert, U. S. (2022). Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications. Advanced Materials, 34(31), 2105015. https://doi.org/10.1002/adma.2....
 
eISSN:3062-0414
Journals System - logo
Scroll to top