Microbial fuel cell technology: Novelties for a clean future
DOI:
https://doi.org/10.62063/rev-1Keywords:
Electricity, Microbial fuel cell, Microbial electrochemistry, Renewable energyAbstract
The degree of civilization exhibited by a society is largely determined by its reliance on energy, and as traditional energy sources such as fossil fuels become scarcer, new technologies will be required to secure sustainable energy. Microbial fuel cell technology is one of the most creative ways to meet humanity's energy demands because it can generate electrical energy from carbon sources. The framework of the limitations limiting the dissemination of this technology has been used to explore in depth new designs and configurations that have been produced recently. Future developments and current applications of this technology in bioremediation investigations are explored. The use of microbial fuel cell technology as a microbial biosensor for the identification of environmental contaminants is particularly significant. However, for a clean and sustainable ecosystem, it is imperative to disclose the challenges associated with the future adoption of this technology.
References
Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research 51, 228-233. https://doi.org/10.1016/j.watres.2013.10.062
Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021). Environmental aspects of fuel cells: A review. The Science of the total environment, 752, 141803. https://doi.org/10.1016/j.scitotenv.2020.141803
Aber, S., Shi, Z., Xing, K., Rameezdeen, R., Chow, C. W. K., Hagare, D., & Jindal, T. (2023). Microbial Desalination Cell for Sustainable Water Treatment: A Critical Review. Global challenges (Hoboken, NJ), 7(10), 2300138. https://doi.org/10.1002/gch2.202300138
Adekunle, A., Gomez Vidales, A., Woodward, L., & Tartakovsky, B. (2021). Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environmental science and pollution research international, 28(10), 12792–12802. https://doi.org/10.1007/s11356-020-11245-6
Adekunle, A., Bambace, S., Tanguay-Rioux, F., & Tartakovsky, B. (2023). Microbial Fuel Cell Biosensor with Capillary Carbon Source Delivery for Real-Time Toxicity Detection. Sensors (Basel, Switzerland), 23(16), 7065. https://doi.org/10.3390/s23167065
Aiyer, K. S. (2020). How does electron transfer occur in microbial fuel cells?. World journal of microbiology & biotechnology, 36(2), 19. https://doi.org/10.1007/s11274-020-2801-z
Ait-Itto, F. Z., Behan, J. A., Martinez, M., & Barrière, F. (2024). Development of bioanodes rich in exoelectrogenic bacteria using iron-rich palaeomarine sediment inoculum. Bioelectrochemistry (Amsterdam, Netherlands), 156, 108618. https://doi.org/10.1016/j.bioelechem.2023.108618
Akagunduz, D., Cebecioglu, R., Ozen, F., Ozdemir, M., Bermek, H., Tarhan, N., Arslan, A., Catal, T. 2022. Effects of Psychoactive Pharmaceuticals in Wastewater on Electricity Generation in Microbial Fuel Cells. CLEAN–Soil, Air, Water, 2100027. https://doi.org/10.1002/clen.202100027
Akul, N.B., Cebecioglu, R., Akagunduz, D., Bermek, H., Ozdemir, M., Catal, T. 2021. Effects of mevastatin on electricity generation in microbial fuel cells. Polish Journal of Environmental Studies 30 (6), 5407. https://doi.org/10.15244/pjoes/133402
An, J., Kim, B., Jang, J. K., Lee, H. S., & Chang, I. S. (2014). New architecture for modulization of membraneless and single-chambered microbial fuel cell using a bipolar plate-electrode assembly (BEA). Biosensors & bioelectronics, 59, 28–34. https://doi.org/10.1016/j.bios.2014.02.063
Antolini, E. (2015). Composite materials for polymer electrolyte membrane microbial fuel cells. Biosensors & bioelectronics, 69, 54–70. https://doi.org/10.1016/j.bios.2015.02.013 Apollon, W. (2023). An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production. Membranes, 13(11), 884. https://doi.org/10.3390/membranes13110884
Arkatkar, A., Mungray, A. K., & Sharma, P. (2021). Biological modification in air-cathode microbial fuel cell: Effect on oxygen diffusion, current generation and wastewater degradation. Chemosphere, 284, 131243. https://doi.org/10.1016/j.chemosphere.2021.131243
Babanova, S., Hubenova, Y., & Mitov, M. (2011). Influence of artificial mediators on yeast-based fuel cell performance. Journal of bioscience and bioengineering, 112(4), 379–387. https://doi.org/10.1016/j.jbiosc.2011.06.008
Bazina, N., Ahmed, T. G., Almdaaf, M., Jibia, S., & Sarker, M. (2023). Power generation from wastewater using microbial fuel cells: A review. Journal of biotechnology, 374, 17–30. https://doi. org/10.1016/j.jbiotec.2023.07.006
Behera, M., Jana, P. S., & Ghangrekar, M. M. (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource technology, 101(4), 1183–1189. https://doi.org/10.1016/j.biortech.2009.07.089
Bermek, H., Catal, T., Akan, S. S., Ulutaş, M. S., Kumru, M., Özgüven, M., Liu, H., Özçelik, B., & Akarsubaşı, A. T. (2014). Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World journal of microbiology & biotechnology, 30(4), 1177–1185. https://doi. org/10.1007/s11274-013-1541-8
Bhaduri, S., & Behera, M. (2024). From single-chamber to multi-anodic microbial fuel cells: A review. Journal of environmental management, 355, 120465. https://doi.org/10.1016/j. jenvman.2024.120465
Biffinger, J. C., Pietron, J., Bretschger, O., Nadeau, L. J., Johnson, G. R., Williams, C. C., Nealson, K. H., & Ringeisen, B. R. (2008). The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors & bioelectronics, 24(4), 906–911. https://doi.org/10.1016/j. bios.2008.07.034
Catal, T., Xu, S., Li, K., Bermek, H., & Liu, H. (2008a). Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors & bioelectronics, 24(4), 855–860. https://doi. org/10.1016/j.bios.2008.07.015
Catal, T., Li, K., Bermek, H., Liu, H. (2008b). Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources 175 (1), 196-200. https://doi.org/10.1016/j. jpowsour.2007.09.083
Catal, T., Fan, Y., Li, K., Bermek, H., Liu, H. (2011a). Utilization of mixed monosaccharides for power generation in microbial fuel cells. Journal of Chemical Technology & Biotechnology 86 (4), 570 574. https://doi.org/10.1002/jctb.2554
Catal, T., Kavanagh, P., O’Flaherty, V., Leech, D. (2011b). Generation of electricity in microbial fuel cells at sub-ambient temperatures. Journal of Power Sources 196 (5), 2676-2681. https://doi. org/10.1016/j.jpowsour.2010.11.031
Catal, T., Cysneiros, D., O’Flaherty, V., & Leech, D. (2011c). Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresource technology, 102(1), 404-410.. https://doi.org/10.1016/j.biortech.2010.07.006
Catal, T., Lesnik, K.L., & Liu, H. (2015). Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Bioresource Technology, 187, 77-83. https://doi.org/10.1016/j.biortech.2015.03.099.
Catal, T., Yavaser, S., Enisoglu-Atalay, V., Bermek, H., & Ozilhan, S. (2018). Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresource technology, 268, 116–120. https://doi. org/10.1016/j.biortech.2018.07.122
Catal, T., Kul, A., Atalay, V.E., Bermek, H., Ozilhan, S., & Tarhan, N. (2019a). Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. Journal of Power Sources, 414, 1-7. https://doi.org/10.1016/j.jpowsour.2018.12.078
Catal, T., Liu, H., Fan, Y., & Bermek, H. (2019b). A clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. Bioresource technology reports, 5, 331-334. https://doi.org/10.1016/j.biteb.2018.10.002
Catal, T., Liu, H., Kilinc, B., & Yilancioglu, K. (2024). Extracellular polymeric substances in electroactive biofilms play a crucial role in improving the efficiency of microbial fuel and electrolysis cells. Letters in applied microbiology, 77(3), ovae017. https://doi.org/10.1093/lambio/ovae017
Cebecioglu, R., Akagunduz, D., & Catal, T. (2021). Hydrogen production in single-chamber microbial electrolysis cells using Ponceau S dye. 3 Biotech, 11(1), 27. https://doi.org/10.1007/s13205-020 02563-0
Cebecioglu, R.E., Akagunduz, D., Bermek, H., Atalay, V.E., & Catal, T. (2022). Decolorization mechanisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production. Main Group Chemistry, 21(3), 851-863. https://doi.org/10.3233/MGC 210180
Chandran, M., Palanisamy, K., Benson, D., & Sundaram, S. (2022). A Review on Electric and Fuel Cell Vehicle Anatomy, Technology Evolution and Policy Drivers towards EVs and FCEVs Market Propagation. Chem Rec, 22(2), e202100235.. https://doi.org/10.1002/tcr.202100235
Chen, L., Zhang, P., Shang, W., Zhang, H., Li, Y., Zhang, W., Zhang, Z., & Liu, F. (2018). Enrichment culture of electroactive microorganisms with high magnetic susceptibility enhances the performance of microbial fuel cells. Bioelectrochemistry (Amsterdam, Netherlands), 121, 65–73. https://doi.org/10.1016/j.bioelechem.2018.01.005
Chen, J., Zhao, K., Wu, Y., Liu, J., Wang, R., Yang, Y., & Liu, Y. (2023). Improved bioelectrochemical performance of MnO2 nanorods modified cathode in microbial fuel cell. Environmental science and pollution research international, 30(17), 49052–49059. https://doi.org/10.1007/s11356-023 25787-y
Chouler, J., & Di Lorenzo, M. (2019). Pesticide detection by a miniature microbial fuel cell under controlled operational disturbances. Water science and technology: a journal of the International Association on Water Pollution Research, 79(12), 2231–2241. https://doi.org/10.2166/ wst.2019.207
Delord, B., Neri, W., Bertaux, K., Derre, A., Ly, I., Mano, N., & Poulin, P. (2017). Carbon nanotube f iber mats for microbial fuel cell electrodes. Bioresource technology, 243, 1227–1231. https://doi. org/10.1016/j.biortech.2017.06.170
Dong, M., Nielsen, L. P., Yang, S., Klausen, L. H., & Xu, M. (2024). Cable bacteria: widespread f ilamentous electroactive microorganisms protecting environments. Trends in microbiology, 32(7), 697–706. https://doi.org/10.1016/j.tim.2023.12.001
Efraim, A., Saeed, M., Elbaz, M. A., Alaa, M., Ahmed, N., Adel, R., Hazem, Y., Elshatoury, E., & Gomaa, O. M. (2023). Shewanella chilikensis MG22 isolated from tannery site for malachite green decolorization in microbial fuel cell: a proposed solution for recirculating aquaculture system (RAS). Microbial cell factories, 22(1), 142. https://doi.org/10.1186/s12934-023-02152-9
Estrada-Arriaga, E. B., Hernández-Romano, J., García-Sánchez, L., Guillén Garcés, R. A., Bahena Bahena, E. O., Guadarrama-Pérez, O., & Moeller Chavez, G. E. (2018). Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration. Journal of environmental management, 214, 232–241. https://doi.org/10.1016/j.jenvman.2018.03.007
Fan, Y., Janicek, A., & Liu, H. (2024). Stable and high voltage and power output of CEA-MFCs internally connected in series (iCiS-MFC). The European Chemistry and Biotechnology Journal, (1), 47–57. https://doi.org/10.62063/ecb-17
Freguia, S., Masuda, M., Tsujimura, S., & Kano, K. (2009). Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry (Amsterdam, Netherlands), 76(1-2), 14–18. https://doi.org/10.1016/j.bioelechem.2009.04.001
Fu, Q., Kobayashi, H., Kawaguchi, H., Wakayama, T., Maeda, H., & Sato, K. (2013). A thermophilic gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability. Environmental science & technology, 47(21), 12583–12590. https://doi.org/10.1021/es402749f
Fujimura, S., Kamitori, K., Kamei, I., Nagamine, M., Miyoshi, K., & Inoue, K. (2022). Performance of stacked microbial fuel cells with barley-shochu waste. Journal of bioscience and bioengineering, 133(5), 467–473. https://doi.org/10.1016/j.jbiosc.2022.02.004
Gajda, I., Greenman, J., & Ieropoulos, I. (2020). Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied energy, 262, 114475. https://doi.org/10.1016/j.apenergy.2019.114475
Georg, S., de Eguren Cordoba, I., Sleutels, T., Kuntke, P., Heijne, A. T., & Buisman, C. J. N. (2020). Competition of electrogens with methanogens for hydrogen in bioanodes. Water research, 170, 115292. https://doi.org/10.1016/j.watres.2019.115292
Gul, H., Raza, W., Lee, J., Azam, M., Ashraf, M., & Kim, K. H. (2021). Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 281, 130828. https:// doi.org/10.1016/j.chemosphere.2021.130828
Jain, M., Sai Kiran, P., Ghosal, P. S., & Gupta, A. K. (2023). Development of microbial fuel cell integrated constructed wetland (CMFC) for removal of paracetamol and diclofenac in hospital wastewater. Journal of environmental management, 344, 118686. https://doi.org/10.1016/j. jenvman.2023.118686
Jaswal, V., J, R. B., & N, Y. K. (2023). Synergistic effect of TiO2 nanostructured cathode in microbial fuel cell for bioelectricity enhancement. Chemosphere, 330, 138556. https://doi.org/10.1016/j. chemosphere.2023.138556
Jia, Y., Ma, D., & Wang, X. (2020). Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech, 10(1), 3. https://doi.org/10.1007/s13205-019-1950-y
Hu, X., Liu, J., Cheng, W., Li, X., Zhao, Y., Wang, F., Geng, Z., Wang, Q., & Dong, Y. (2023). Synergistic interactions of microbial fuel cell and microbially induced carbonate precipitation technology with molasses as the substrate. Environmental research, 228, 115849. https://doi. org/10.1016/j.envres.2023.115849
Icaza-Alvarez, D., Jurado, F., Flores, C., Ortiz, G.R. (2023). Ecuadorian electrical system: Current status, renewable energy and projections. Heliyon. 9(5), e16010. https://doi.org/10.1016/j. heliyon.2023.e16010.
Ishaq, A., Said, M. I. M., Azman, S. B., Dandajeh, A. A., Lemar, G. S., & Jagun, Z. T. (2023). Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. Environmental science and pollution research international, 10.1007/s11356-023 30841-w. Advance online publication. https://doi.org/10.1007/s11356-023-30841-w
Kampker, A., P. Ayvaz, C. Schön, J. Karstedt, R. Förstmann, F. Welker, (2020). Challenges towards large-scale fuel cell production: Results of an expert assessment study, International Journal of Hydrogen Energy, 45(53), 29288-29296. https://doi.org/10.1016/j.ijhydene.2020.07.180.
Kang, Y. L., Ibrahim, S., & Pichiah, S. (2015). Synergetic effect of conductive polymer poly(3,4 ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresource technology, 189, 364–369. https://doi.org/10.1016/j.biortech.2015.04.044
Khan, A., Salama, E.S., Chen, Z., Ni, H., Zhao, S., Zhou, T., Pei, Y., Sani, R.K., Ling, Z., Liu, P., Li, X. (2020). A novel biosensor for zinc detection based on microbial fuel cell system. Biosensors and bioelectronics 147, 111763. https://doi.org/10.1016/j.bios.2019.111763
Kilinc, B., Akagunduz, D., Ozdemir, M., Kul, A., & Catal, T. (2023). Hydrogen production using cocaine metabolite in microbial electrolysis cells. 3 Biotech, 13(11), 382. https://doi.org/10.1007/s13205 023-03805-7
Kilinc, B., & Catal, T. (2023). A Novel Microbial Fuel Cell for the Sensing of Sodium Acetate in Soil. Polish Journal of Environmental Studies, 32(5), 4931-4936. https://doi.org/10.15244/pjoes/168804
Kirubaharan, C. J., Wang, J. W., Abbas, S. Z., Shah, S. B., Zhang, Y., Wang, J. X., & Yong, Y. C. (2023). Self-assembly of cell-embedding reduced graphene oxide/ polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell. Chemosphere, 326, 138413. https://doi. org/10.1016/j.chemosphere.2023.138413
Koók, L., Quéméner, E. D., Bakonyi, P., Zitka, J., Trably, E., Tóth, G., Pavlovec, L., Pientka, Z., Bernet, N., Bélafi-Bakó, K., & Nemestóthy, N. (2019). Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators. Bioresource technology, 278, 279–286. https://doi.org/10.1016/j.biortech.2019.01.097
Kumru, M., Eren, H., Catal, T., Bermek, H., & Akarsubaşı, A.T. (2012). Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environmental technology, 33 (18), 2167-2175. https://doi.org/10.1080/09593330.2012.660655
Li, W. W., & Yu, H. Q. (2015). Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnology advances, 33(1), 1–12. https://doi.org/10.1016/j.biotechadv.2014.12.011
Li, H., Cheng, J., Dong, H., Fang, Z., Zhou, J., & Lin, R. (2021a). Zeolitic imidazolate framework derived porous carbon enhances methanogenesis by facilitating interspecies electron transfer: Understanding fluorimetric and electrochemical responses of multi-layered extracellular polymeric substances. The Science of the total environment, 781, 146447. https://doi.org/10.1016/j.scitotenv.2021.146447
Li, Y., Liu, J., Chen, X., Wu, J., Li, N., He, W., & Feng, Y. (2021b). Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells. ACS applied materials & interfaces, 13(49), 58508–58521. https://doi.org/10.1021/acsami.1c16583
Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water research, 141, 1–8. https://doi.org/10.1016/j.watres.2018.04.066
Ma, Z., Meliana, C., Munawaroh, H. S. H., Karaman, C., Karimi-Maleh, H., Low, S. S., & Show, P. L. (2022). Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. Chemosphere, 306, 135515. https://doi.org/10.1016/j.chemosphere.2022.135515
Mahmoud, M., Gad-Allah, T. A., El-Khatib, K. M., & El-Gohary, F. (2011). Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications. Bioresource technology, 102(22), 10459–10464. https://doi.org/10.1016/j.biortech.2011.08.123
Mahmoodzadeh, F., Navidjouy, N., Alizadeh, S., & Rahimnejad, M. (2023). Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Scientific reports, 13(1), 20755. https://doi.org/10.1038/s41598-023-48290-3
Mirza, S. S., Al-Ansari, M. M., Ali, M., Aslam, S., Akmal, M., Al-Humaid, L., & Hussain, A. (2022). Towards sustainable wastewater treatment: Influence of iron, zinc and aluminum as anode in combination with salt bridge on microbial fuel cell performance. Environmental research, 209, 112781. https://doi.org/10.1016/j.envres.2022.112781
Merino-Jimenez, I., Gonzalez-Juarez, F., Greenman, J., & Ieropoulos, I. (2019). Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of power sources, 429, 30–37. https://doi.org/10.1016/j.jpowsour.2019.04.043
Mohyudin, S., Farooq, R., Jubeen, F., Rasheed, T., Fatima, M., & Sher, F. (2022). Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environmental research, 204(Pt D), 112387. https://doi.org/10.1016/j.envres.2021.112387
Moon, H., Chang, I. S., & Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource technology, 97(4), 621–627. https://doi. org/10.1016/j.biortech.2005.03.027
Motos, R.P., Molina, G., Ter Heijne, A., Sleutels, T., Saakes, M., & Buisman, C. (2017). Prototype of a scaled-up microbial fuel cell for copper recovery. Journal of chemical technology and biotechnology (Oxford, Oxfordshire: 1986), 92(11), 2817–2824. https://doi.org/10.1002/jctb.5353
Ouyang, T., Liu, W., Shi, X., Li, Y., & Hu, X. (2023). Multi-criteria assessment and triple-objective optimization of a bio-anode microfluidic microbial fuel cell. Bioresource technology, 382, 129193. https://doi.org/10.1016/j.biortech.2023.129193
Ozdemir, M., Enisoglu-Atalay, V., Bermek, H., Ozilhan, S., Tarhan, N., & Catal, T. (2019). Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresource technology reports, 5, 121-126. https://doi.org/10.1016/j.biteb.2019.01.003
Prathiba, S., Kumar, P. S., & Vo, D. N. (2022). Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere, 286(Pt 3), 131856. https://doi.org/10.1016/j.chemosphere.2021.131856
Priya, A. K., Subha, C., Kumar, P. S., Suresh, R., Rajendran, S., Vasseghian, Y., & Soto-Moscoso, M. (2022). Advancements on sustainable microbial fuel cells and their future prospects: A review. Environmental research, 210, 112930. https://doi.org/10.1016/j.envres.2022.112930
Pugazhendi, A., Jamal, M. T., Al-Mur, B. A., & Jeyakumar, R. B. (2022). Bioaugmentation of electrogenic halophiles in the treatment of pharmaceutical industrial wastewater and energy production in microbial fuel cell under saline condition. Chemosphere, 288(Pt 2), 132515. https:// doi.org/10.1016/j.chemosphere.2021.132515
Qiu, B., Hu, Y., Tang, C., Chen, Y., & Cheng, J. (2021). Simultaneous mineralization of 2-anilinophenylacetate and denitrification by Ru/Fe modified biocathode double-chamber microbial fuel cell. The Science of the total environment, 792, 148446. https://doi.org/10.1016/j.scitotenv.2021.148446
Reguera G. (2018). Microbial nanowires and electroactive biofilms. FEMS microbiology ecology, 94(7), 10.1093/femsec/fiy086. https://doi.org/10.1093/femsec/fiy086
Roh, S. H., & Woo, H. G. (2015). Carbon Nanotube Composite Electrode Coated with Polypyrrole for Microbial Fuel Cell Application. Journal of nanoscience and nanotechnology, 15(1), 484–487. https://doi.org/10.1166/jnn.2015.8404
Roy, H., Rahman, T. U., Tasnim, N., Arju, J., Rafid, M. M., Islam, M. R., Pervez, M. N., Cai, Y., Naddeo, V., & Islam, M. S. (2023). Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes, 13(5), 490. https://doi.org/10.3390/membranes13050490
Santoro, C., Serov, A., Narvaez Villarrubia, C. W., Stariha, S., Babanova, S., Schuler, A. J., Artyushkova, K., & Atanassov, P. (2015). Double-chamber microbial fuel cell with a non-platinum group metal Fe-N-C cathode catalyst. ChemSusChem, 8(5), 828–834. https://doi.org/10.1002/ cssc.201402570
Saran, C., Purchase, D., Saratale, G.D., Saratale, R.G., Romanholo, Ferreira, L.F., Bilal, M., Iqbal, H.M.N., Hussain, C.M., Mulla, S.I., & Bharagava, R.N. (2023). Microbial fuel cell: A green ecofriendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. Chemosphere, 312(Pt 1), 137072 https://doi.org/10.1016/j.chemosphere.2022.137072.
Sato, C., Apollon, W., Luna-Maldonado, A. I., Paucar, N. E., Hibbert, M., & Dudgeon, J. (2023). Integrating Microbial Fuel Cell and Hydroponic Technologies Using a Ceramic Membrane Separator to Develop an Energy-Water-Food Supply System. Membranes, 13(9), 803. https://doi. org/10.3390/membranes13090803
Selvasembian, R., Mal, J., Rani, R., Sinha, R., Agrahari, R., Joshua, I., Santhiagu, A., & Pradhan, N. (2022). Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. Bioresource technology, 346, 126462. https://doi.org/10.1016/j.biortech.2021.126462
Sen, P., Akagunduz, D., Aghdam, A.S., Cebeci, F.Ç., Nyokong, T., & Catal, T. (2020). Synthesis of novel Schiff base cobalt (II) and iron (III) complexes as cathode catalysts for microbial fuel cell applications. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1110-1120. https://doi.org/10.1007/s10904-019-01286-x
Sonmez, E., Avci, B., Mohamed, N., & Bermek, H. (2024). Investigation of performance losses in microbial fuel cells with low platinum loadings on air-cathodes. The european chemistry and biotechnology journal, (1), 11–26. https://doi.org/10.62063/ecb-14
Sorgato, A. C., Jeremias, T. C., Lobo, F. L., & Lapolli, F. R. (2023). Microbial fuel cell: Interplay of energy production, wastewater treatment, toxicity assessment with hydraulic retention time. Environmental research, 231(Pt 2), 116159. https://doi.org/10.1016/j.envres.2023.116159
Sukkasem, C. (2024) Exploring biofilm-forming bacteria for integration into BioCircuit wastewater treatment. The european chemistry and biotechnology journal, 2, 96-109.
Suresh, R., Rajendran, S., Kumar, P. S., Dutta, K., & Vo, D. N. (2022). Current advances in microbial fuel cell technology toward removal of organic contaminants - A review. Chemosphere, 287(Pt 2), 132186. https://doi.org/10.1016/j.chemosphere.2021.132186
Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2010). Solar energy powered microbial fuel cell with a reversible bioelectrode. Environmental science & technology, 44(1), 532–537. https://doi. org/10.1021/es902435v
Tahir, K., Miran, W., Jang, J., Maile, N., Shahzad, A., Moztahida, M., Ghani, A. A., Kim, B., & Lee, D. S. (2021). MnCo2O4 coated carbon felt anode for enhanced microbial fuel cell performance. Chemosphere, 265, 129098. https://doi.org/10.1016/j.chemosphere.2020.129098
Tejedor-Sanz, S., Li, S., Kundu, B. B., & Ajo-Franklin, C. M. (2023). Extracellular electron uptake from a cathode by the lactic acid bacterium Lactiplantibacillus plantarum. Frontiers in microbiology, 14, 1298023. https://doi.org/10.3389/fmicb.2023.1298023
Thapa, B. S., Kim, T., Pandit, S., Song, Y. E., Afsharian, Y. P., Rahimnejad, M., Kim, J. R., & Oh, S. E. (2022). Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresource technology, 347, 126579. https://doi.org/10.1016/j. biortech.2021.126579
Walter, X. A., Santoro, C., Greenman, J., & Ieropoulos, I. (2020). Scaling up self-stratifying supercapacitive microbial fuel cell. International journal of hydrogen energy, 45(46), 25240 25248. https://doi.org/10.1016/j.ijhydene.2020.06.070
Wang, J., Song, X., Wang, Y., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource technology, 221, 697–702. https://doi.org/10.1016/j.biortech.2016.09.116
Wang, G., & Feng, C. (2017). Electrochemical Polymerization of Hydroquinone on Graphite Felt as a Pseudocapacitive Material for Application in a Microbial Fuel Cell. Polymers, 9(6), 220. https:// doi.org/10.3390/polym9060220
Wang, X., Tian, Y., Liu, H., Zhao, X., & Peng, S. (2019). The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands. The Science of the total environment, 656, 270–279. https://doi.org/10.1016/j.scitotenv.2018.11.328
Wu, D., Zhang, B., Shi, S., Tang, R., Qiao, C., Li, T., Jia, J., Yang, M., Si, X., Wang, Y., Sun, X., Xiao, D., Li, F., & Song, H. (2024). Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction. Journal of hazardous materials, 465, 133171. https://doi.org/10.1016/j.jhazmat.2023.133171
Vidhyeswari, D., Surendhar, A., & Bhuvaneshwari, S. (2022). General aspects and novel PEMss in microbial fuel cell technology: A review. Chemosphere, 309(Pt 1), 136454. https://doi.org/10.1016/j. chemosphere.2022.136454
Yao, H., Xiao, J., & Tang, X. (2023). Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering (Basel, Switzerland), 10(8), 886. https://doi. org/10.3390/bioengineering10080886
Yildiz, I. 1.12 Fossil Fuels, Editor(s): Ibrahim Dincer, Comprehensive Energy Systems, Elsevier, 2018, Pages 521-567, ISBN 9780128149256, Yu, M., Yang, Q., Yuan, X., Li, Y., Chen, X., Feng, Y., & Liu, J. (2021). Boosting oxygen reduction and permeability properties of doped iron-porphyrin membrane cathode in microbial fuel cells. Bioresource technology, 320(Pt A), 124343. https://doi.org/10.1016/j.biortech.2020.124343
Zhang, J., Jiao, W., Huang, S., Wang, H., Cao, X., Li, X., Sakamaki, T. (2022). Application of microbial fuel cell technology to the remediation of compound heavy metal contamination in soil. Journal of Environment management 320, 115670. https://doi.org/10.1016/j.jenvman.2022.115670.
Zhang, G., Liang, D., Zhao, Z., Qi, J., & Huang, L. (2022b). Enhanced performance of microbial fuel cell with electron mediators from tetracycline hydrochloride degradation. Environmental research, 206, 112605. https://doi.org/10.1016/j.envres.2021.112605
Zhao, F., Rahunen, N., Varcoe, J. R., Roberts, A. J., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. (2009). Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors & bioelectronics, 24(7), 1931–1936. https://doi.org/10.1016/j.bios.2008.09.030
Zheng, L., Lin, X., Liu, Y., Li, H., Sun, Y., & Li, C. (2022). Synergistically enhanced oxygen reduction reaction and oxytetracycline mineralization by FeCoO/GO modified cathode in microbial fuel cell. The Science of the total environment, 808, 151873. https://doi.org/10.1016/j.scitotenv.2021.151873
Zhou, H., Xuanyuan, X., Lv, X., Wang, J., Feng, K., Chen, C., Ma, J., & Xing, D. (2023). Mechanisms of magnetic sensing and regulating extracellular electron transfer of electroactive bacteria under magnetic fields. The Science of the total environment, 895, 165104. https://doi.org/10.1016/j. scitotenv.2023.165104
Zhu, K., Xu, Y., Yang, X., Fu, W., Dang, W., Yuan, J., & Wang, Z. (2022). Sludge Derived Carbon Modified Anode in Microbial Fuel Cell for Performance Improvement and Microbial Community Dynamics. Membranes, 12(2), 120. https://doi.org/10.3390/membranes12020120 Zhu, T. J., Lin, C. W., & Liu, S. H. (2023). Sensitivity and reusability of a simple microbial fuel cell based sensor for detecting bisphenol A in wastewater. Chemosphere, 320, 138082. https://doi.org/10.1016/j.chemosphere.2023.138082
Zhuang, L., Zhou, S., Li, Y., & Yuan, Y. (2010). Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresource technology, 101(10), 3514–3519. https://doi.org/10.1016/j.biortech.2009.12.105

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tunc Catal, Hong Liu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.