Microbial fuel cells: A potent and sustainable solution for heavy metal removal

Authors

  • Dilan Akagunduz Department of Molecular Biology and Genetics Istanbul Technical University Maslak, Istanbul 34467, Turkey https://orcid.org/0000-0002-8057-6688
  • Ozlem Aydin Department of Molecular Biology and Genetics Istanbul Technical University Maslak, Istanbul 34467, Turkey https://orcid.org/0009-0003-5695-1139
  • Ebru Tuncay Department of Molecular Biology and Genetics Istanbul Technical University Maslak, Istanbul 34467, Turkey https://orcid.org/0009-0007-1540-3637
  • Hakan Bermek Department of Molecular Biology and Genetics Istanbul Technical University Maslak, Istanbul 34467, Turkey https://orcid.org/0000-0003-2911-7678

DOI:

https://doi.org/10.62063/rev-6

Keywords:

Adsorption, heavy metals, membrane separation, metabolism, microbial fuel cell, water pollution, water treatment

Abstract

The global water pollution problem is becoming increasingly crucial. One of the major contributors to water pollution is the presence of heavy metals. Heavy metals pose significant threat to both humans and all ecosystems. Various factors influence the removal of heavy metals from wastewater, including pH, temperature, natural organic matter (NOM), and ionic strength, which vary based on the chemical properties of the pollutants. More effective and modern approaches receive attention and extensively researched to substitute traditional methods such as adsorption, membrane filtration, and chemical-based separation. Among these methods, Microbial fuel cells (MFCs) are particularly intriguing. This review article focuses on MFCs and their potential applications in various fields, including clean water production. MFCs represent an innovative technology that not only generates electricity, but also demonstrates significant potential for heavy metal removal from wastewater. Cathodic chamber of MFCs effectively reduces heavy metals, while organic substrates act as carbon and electron donors in the anodic chamber. Through various mechanisms, including direct and indirect metal reduction, biofilm formation (metal sequestering), electron shuttling, and synergistic interactions among microbial communities, microorganisms exhibit remarkable efficiency in removing metals. Studies showed that dual- and single-chamber MFCs could efficiently remove a range of heavy metals, including chromium, cobalt, copper, vanadium, mercury, gold, selenium, lead, magnesium, manganese, zinc, and sodium, while simultaneously generating electricity, achieving high removal efficiencies ranging from 25% to 99.95%. This range of efficiency varies depending on the specific contaminant being targeted, the concentration of the contaminant, as well as the operating conditions such as pH and temperature. Moreover, MFCs demonstrated a wide range of power outputs, typically ranging from 0.15 W/m² to 6.58 W/m², depending on the specific configuration and conditions. These findings underscore the potential of MFCs as a sustainable and efficient approach for both wastewater treatment and energy generation.

 

References

Abbas, S. Z., Rafatullah, M., Ismail, N., & Syakir, M. I. (2017). A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: Mechanisms and future prospective. International Journal of Energy Research, 41(9), 1242–1264. https://doi.org/10.1002/er.3706

Abdel-Fatah, M. A. (2018). Nanofiltration systems and applications in wastewater treatment. Ain Shams Engineering Journal, 9(4), 3077-3092. https://doi.org/10.1007/s10646-021-02409-2

Adekunle, A., Rickwood, C., Tartakovsky, B. (2021). On-line monitoring of water quality with a floating microbial fuel cell biosensor: field test results. Ecotoxicology, 30(5), 851–862. https://doi.org/10.1007/s10646-021-02409-2

Ajiboye, T. O., Oyewo, O. A., & Onwudiwe, D. C. (2021). Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere, 262, 128379. https://doi.org/10.1016/j.chemosphere.2020.128379

Akagündüz, D., Cebecioğlu, R., Özdemir, M., & Catal, T. (2021). Removal of psychoactive pharmaceuticals from wastewaters using microbial electrolysis cells producing hydrogen, Water Science & Technology, 84(4), 931-940. https://doi.org/10.2166/wst.2021.269

Akagündüz, D., Cebecioğlu, R., Ozen, F., Ozdemir, M., Bermek, H., Tarhan, N., Arslan, A., Catal, T. (2022). Effects of Psychoactive Pharmaceuticals in Wastewater on Electricity Generation in Microbial Fuel Cells. Clean - Soil, Air, Water, 50(3), 2100027. https://doi.org/10.1002/clen.202100027

Akul, N.B., Cebecioglu, R., Akagunduz, D., Bermek, H., Ozdemir, M., & Catal, T. (2021). Effects of mevastatin on electricity generation in microbial fuel cells. Polish Journal of Environmental Studies, 30(6), 5407-5412. https://doi.org/10.15244/pjoes/133402

Arkatkar, A., Mungray, A. K., & Sharma, P. (2021). Study of electrochemical activity zone of Pseudomonas aeruginosa in microbial fuel cell. Process Biochemistry, 101, 213–217. https://doi.org/10.1016/j.procbio.2021.01.005

Arslan, B. A., Akdoğan, E., Cebeci, F. Ç., & Catal, T. (2020). Bioelectricity generation using human neuronal-like cells in single chamber biofuel cells. Journal of Cleaner Production, (271), 122505. https://doi.org/10.1016/j.jclepro.2020.122505

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972

Bellona, A. S. (2015). Nanofiltration technology in water treatment and reuse: applications and costs. Water Science & Technology, 309-319. https://doi.org/10.2166/wst.2015.015

Bond, D. R., & Lovley, D. R. (2005). Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology, 71(4), 2186–2189. https://doi.org/10.1128/aem.71.4.2186-2189.2005

Borole, A. P., O’Neill, H., Tsouris, C., & Cesar, S. (2008). A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters, 30(8), 1367-1372. https://doi. org/10.1007/s10529-008-9700-y

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e04691

Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., & Liu, H. (2019). Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18(1). https://doi.org/10.1186/s12934-019-1087-z

Catal, T., Bermek, H., & Liu, H. (2009). Removal of selenite from wastewater using microbial fuel cells. Biotechnology Letters, 31(8), 1211–1216. https://doi.org/10.1007/s10529-009-9990-8

Catal, T., Kul, A., Atalay, V. E., Bermek, H., Ozilhan, S., & Tarhan, N. (2019). Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. Journal of Power Sources, 414, 1–7. https://doi.org/10.1016/j.jpowsour.2018.12.078

Catal, T., Liu, H., Fan, Y., & Bermek, H. (2018b). A clean technology to convert sucrose and lignocellulose in microbial electrochemical cells into electricity and hydrogen. Bioresource Technology Reports, 5, 331-334. https://doi.org/10.1016/j.biteb.2018.10.002

Catal, T., Liu, H., Kilinc, B., & Yilancioglu K. (2024). Extracellular polymeric substances in electroactive biofilms play a crucial role in improving the efficiency of microbial fuel and electrolysis cells. Letters in Applied Microbiology, 1;77(3). https://doi.org/10.1093/lambio/ovae017

Catal, T., Yavaser, S., Enisoglu-Atalay, V., Bermek, H., & Ozilhan, S. (2018a). Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresource Technology, (268), 116-120. https://doi.org/10.1016/j.biortech.2018.07.122

Cebecioğlu R. E., Akagündüz, D., Bermek, H., Atalay, V. E., Catal, T. (2022). Decolorization mecha nisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production, Main Group Chemistry, 1-13. https://doi.org/10.3233/MGC-210180

Chen, H., Zhao, J., Dai, G., Wu, J., & Yan, H., (2010). Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination 262, 174e182. https://doi.org/10.1016/j.desal.2010.06.006

Choi, C., & Hu, N. (2013). The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresource Technology, 133, 589-598. https://doi.org/10.1016/j.biortech.2013.01.143

Corbella, C., Hartl, M., Fernandez Gatell, M., & Puigagut, J. (2019). MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Science Total Environment, 10(660), 218-226. https://doi.org/10.1016/j.scitotenv.2018.12.347

Dahiya, A. (2020). Part 1 Bioenergy-biomass to biofuels: an overview. Bioenergy, 1-4. https://doi.org/10.1016/B978-0-12-815497-7.02001-7

Dahman, Y. (2017). Nanopolymers. Nanotechnology and Functional Materials for Engineers. Elsevier 121-144. https://doi.org/10.1016/B978-0-323-51256-5.00006-X

Dai, H. N., Nguyen, T.-A. D., Le, L.-P. M., Tran, M. V., Lan, T.-H., & Wang, C.T. (2021). Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent. International Journal of Hydrogen Energy, 46(31), 16612-16621. https://doi.org/10.1016/j.ijhydene.2020.09.264

Du, Z., Li, H., & Gu, T. (2007). A state-of-the-art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004

Environmental Protection Agency (EPA) (2024). ‘’National Primary Drinking Water Regulations’’, https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations, Last access date: 21 August 2024.

Fan, Y., Janicek, A., & Liu, H. (2024). Stable and high voltage and power output of CEA-MFCs internally connected in series (iCiS-MFC). The European Chemistry and Biotechnology Journal, 1, 47–57. https://doi.org/10.62063/ecb-17

Fedorovich, V., Knighton, M. C., Pagaling, E., Ward, F. B., Free, A., & Goryanin, I. (2009). Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Applied and Environmental Microbiology, 75(23), 7326–7334. https://doi.org/10.1128/AEM.01345-09

Ferraz, M., & Lourenco, J., (2000). The influence of organic matter content of contaminated soils on the leaching rate of heavy metals. Environ. Prog. 19 (1), 53e58. https://doi.org/10.1002/ep.670190118

Garud, R. M., Kore, S. V., Kore, V. S., & Kulkarni, G. S. (2011). A Short Review on Process and Applications of Reverse Osmosis. Universal Journal of Environmental Research & Technology, 1(3).

Gharai, M., & Venugopal, R. (2016). Modeling of flotation process—An overview of different approaches. Mineral Processing and Extractive Metallurgy Review, 37(2), 120-133. https://doi.org/10.1080/08827508.2015.1115991

Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2018). Clay mineral adsorbents for heavy metal removal from wastewater: A Review. Environmental Chemistry Letters, 17(2), 629–654. https://doi.org/10.1007/s10311-018-0813-9

Guo, Y., Wang, J., Shinde, S., Wang, X., Li, Y., Dai, Y., Ren, J., Zhang P., & Liu, X. (2020). Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Advances, 10(43), 25874–25887. https://10.1039/d0ra05234e

Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes, 10(7), 146. https://doi.org/10.3390/membranes10070146

Hakami, M. W., Alkhudhiri, A., Al-Batty, S., Zacharof, M.-P., Maddy, J., & Hilal, N. (2020). Ceramic microfiltration membranes in wastewater treatment: Filtration behavior, fouling and prevention. Membranes, 10(9), 248. https://doi.org/10.3390/membranes10090248

Heijne, A. T., Liu, F., Weijden, R. van, Weijma, J., Buisman, C. J. N., & Hamelers, H. V. M. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science Technology, 44(11), 4376–4381. https://doi.org/10.1021/es100526g

Ho, Y. C., Chua, S. C., & Chong, F. K. (2020). Coagulation-flocculation technology in water and wastewater treatment. Handbook of Research on Resource Management for Pollution and Waste Treatment. 432-457. https://doi.org/10.4018/978-1-7998-0369-0.ch018

Holmes, D. E., Nicoll, J. S., Bond, D. R., & Lovley, D. R. (2004). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology, 70(10), 6023–6030. https://doi.org/10.1128/AEM.70.10.6023-6030.2004

Huang, L., Li, T., Liu, C., Quan, X., Chen, L., Wang, A., & Chen, G. (2013). Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology, 128, 539-546. https://doi.org/10.1016/j.biortech.2012.11.011

Jadhav, D. A., Mungray, A. K., Arkatkar, A., & Kumar, S. S. (2021). Recent advancement in scaling-up applications of microbial fuel cells: From reality to practicability. Sustainable Energy Technologies and Assessments, 45, 101226. https://10.1016/j.seta.2021.101226

Jatoi, A. S., Akhter, F., Mazari, S. A., Sabzoi, N., Aziz, S., Soomro, S. A., Mujawar Mubarak, N., Baloch, H., Memon, A. Q., & Ahmed, S. (2020). Advanced microbial fuel cell for wastewater treatment—a review. Environmental Science and Pollution Research, 28, 5005–5019. https://doi.org/10.1007/s11356-020-11691-2

Joseph, L., Jun, B. M., Flora, J. R., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142-159. https://doi.org/10.1016/j.chemosphere.2019.04.198

Karnib, M., Kabbani, A., Holail, H., & Olama, Z. (2014). Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113–120. https://doi.org/10.1016/j.egypro.2014.06.014

Kilinc, B. & Catal T. (2023). A Novel Microbial Fuel Cell for the Sensing of Sodium Acetate in Soil Polish Journal of Environmental Studies, 32 (5), 4931-4936. https://doi.org/10.15244/pjoes/168804

Kumar, A. S. K., Jiang, S. J., & Tseng, W. L. (2015). Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry A, 3(13), 7044-7057. https://doi.org/10.1039/C4TA06948J

Kumpulainen, S., von der Kammer, F., & Hofmann, T. (2008). Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Research, 42(8-9), 2051-2060. https://doi.org/10.1016/j.watres.2007.12.015

Kuntke, P., Zamora, P., Saakes, M., Buisman, C., & Hamelers, H. (2016). Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems. Environmental Science: Water Research & Technology, 2(2), 261-265. https://doi.org/10.1039/C5EW00299K

Lee, D. J., Chang, J. S., & Lai, J. Y. (2015). Microalgae-microbial fuel cell: A mini review. Bioresource Technology, (198), 891-895. https://doi.org/10.1016/j.biortech.2015.09.061

Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 370(1–2), 1–22. https://doi.org/10.1016/j.memsci.2010.12.036

Li, F., Yin, C., Sun, L., Li, Y., Guo, X., & Song, H. (2017). Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnology Journal, 13(5), 1700491. https://doi.org/10.1002/biot.201700491

Li, S.-W., He, H., Zeng, R. J., & Sheng, G.-P. (2017). Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere, 168, 293–299. https://doi.org/10.1016/j.chemosphere.2016.10

Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (II), Zinc (II) and Mercury (II) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366.https://doi.org/10.1016/j.ecoenv.2017.08.058

Lin, L., Yang, H., & Xu, X. (2022). Effects of water pollution on human health and disease heterogeneity: a review. Frontiers in Environmental Science, 10:880246. https://doi.org/10.3389/fenvs.2022.880246

Liu, H., Yang, G., Jia, H., & Sun, B. (2022). Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 isolated from an oil-contaminated lake wetland. Processes, 10(2), 307. https://doi.org/10.3390/pr10020307

Liu, L., Lee, D.J., Wang, A., Ren, N., Su, A., & Lai, J.Y. (2016). Isolation of Fe(III)-reducing bacterium, Citrobacter sp. LAR-1, for startup of microbial fuel cell. International Journal of Hydrogen Energy, 41(7), 4498-4503. https://doi.org/10.1016/j.ijhydene.2015.07.072

Liu, Z., Lian, J., Du, Z., & Li, H. (2006). Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chinese Journal of Biotechnology, 22(1), 131–137. https://doi.org/10.1016/s1872-2075(06)60010-1

Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A.-E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: The microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology, 59, 1-100. https://doi.org/10.1016/B978-0-12-3876614.00004-5

Lu, H., Zhang, C., & Hu, Z. (2023). Electricity production by Ochrobactrum-related strain CD-1 and Pb²+ removal in dual-chamber microbial fuel cell. Global NEST Journal, 25(7). https://doi.org/10.30955/gnj.005083

Lye, D., (2009). Rooftop runoff as a source of contamination: a review. Science of The Total Environment, 407(21), 5429e5434. https://doi.org/10.1016/j.scitotenv.2009.07.011

Marshall, C. W., & May, H. D. (2009). Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy & Environmental Science, 2(7), 699-705. https://doi.org/10.1039/B823237G

Mehtaa, D. S. M. (2015). Magnetic adsorbents for the treatment of water/wastewater-A review. Journal of Water Process Engineering, 244-265. https://doi.org/10.1016/j.jwpe.2015.07.001

Mondal, S., & Wickramasinghe, S. R. (2008). Produced water treatment by nanofiltration and reverse osmosis membranes. Journal of membrane science, 322(1), 162-170. https://doi.org/10.1016/j.memsci.2008.05.039

Moussavi, G., & Barikbin, B. (2010). Biosorption of chromium(vi) from industrial wastewater onto pistachio hull waste biomass. Chemical Engineering Journal, 162(3), 893–900. https://doi.org/10.1016/j.cej.2010.06.032

Munoz-Cupa, C., & Bassi, A. (2024). Investigation of heavy metal removal from salty wastewater and voltage production using Shewanella oneidensis MR-1 nanowires in a dual-chamber microbial fuel cell. Environmental Progress & Sustainable Energy, 43(1), e14237. https://doi.org/10.1002/ep.14237

Murray, K. S., Rogers, D. T., & Kaufman, M. M. (2004). Heavy metals in an urban watershed in southeastern Michigan. Journal of Environmental Quality, 33(1), 163–172. https://doi.org/10.2134/jeq2004.1630

Muruganandam, L., Saravana Kumar, M. P., Jena, A., Gulla, S., & Godhwani, B. (2017). Treatment of waste water by coagulation and flocculation using biomaterials. IOP Conference Series:Materials Science and Engineering, 263, 032006. https://doi.org/10.1088/1757-899x/263/3/032006

Naha, A., Debroy, R., Sharma, D., Shah, M. P., & Nath, S. (2023). Microbial fuel cell: A state-of-the art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050

Nascimento, M., Rodrigues, J., Matias, R., & Jordao, L. (2024). Aeromonas spp. in freshwater bodies: Antimicrobial resistance and biofilm assembly. Antibiotics, 13(2), 166. https://doi.org/10.3390/antibiotics13020166

Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P., Woodard, T. L., Orloff, A. L., Jia, M., Zhang, M., & Lovley, D. R. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental Microbiology, 10(10), 2505–2514. https://doi.org/10.1111/j.1462-2920.2008.01656.x

Noori, M. T., Thatikayala, D., Pant, D., & Min, B. (2022). A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. Bioresource Technology, 347:126589. https://doi.org/10.1016/j.biortech.2021.126589

Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., & Levin, E.D. (2009). The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35(6), 971e986. https://doi.org/10.1016/j.envint.2009.02.006

Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14(5), 10197-10228. https://doi.org/10.3390/ijms140510197

Ozdemir, M., Enisoglu-Atalay, V., Bermek, H., Ozilhan, S., Tarhan, N., & Catal, T. (2019). Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresource Technology Reports, 5, 121-126. https://doi.org/10.1016/j.biteb.2019.01.003

Padmanabhan, S., Yadavar, K. R., Muthaiah, M., & Muthukumar, A. (2023). Identification of predominant bacterial species involved in microbial fuel cell assisted electricity generation using fish market wastewater. Cleaner and Circular Bioeconomy, 6, 100051. https://doi.org/10.1016/j.clcb.2023.100051

Pandit, A. B., & Kumar, J. K. (2015). Clean Water for Developing Countries. Annual Review of Chemical and Biomolecular Engineering, 6(1), 217–246. https://doi.org/10.1146/annurev-chembioeng-061114-123432

Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017

Pantsar-Kallio, M., Reinikainen, S.P., & Oksanen, M. (2001). Interactions of soil components and their effects on speciation of chromium in soils. Analytica Chimica Acta, 439(1), 9–17. https://doi.org/10.1016/S0003-2670(01)00840-6

Park, Y. H., Park, E., & Smith, G. (2019). Energy harvesting using exoelectrogenic Shewanella oneidensis bacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3879-3886. https://doi.org/10.1080/15567036.2018.1557856

Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Ścibisz, I. (2018). Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied Microbiology and Biotechnology, 102(2), 515-538. https://doi.org/10.1007/s00253-0178616-7

Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 1-15. https://doi.org/10.1038/s41545-021-00127-0

Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer. Applied and Environmental Microbiology, 70(9), 5373–5382. https://doi.org/10.1128/aem.70.9.5373-5382.2004

Rabaey, K., Rodríguez, J., Blackall, L. L., Keller, J., Gross, P., Batstone, D., Verstraete, W., & Nealson, K. H. (2007). Microbial Ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, 1(1), 9–18. https://doi.org/10.1038/ismej.2007.4

Ramakrishnaiah, C. R., & Prathima, B. (2012). Hexavalent chromium removal from industrial wastewater by chemical precipitation method. International Journal of Engineering Research and Applications, 2(2), 599-603.

Reiche, A., Sivell, J., & Kirkwood, K. M. (2015). Electricity generation by Propionibacterium freudenreichii in a mediatorless microbial fuel cell. Biotechnology Letters, 38(1), 51–55. https://doi.org/10.1007/s10529-015-1944-8

Roy, B., Maitra, D., Sarkar, S., Podder, R., Das, T., Ghosh, J., & Mitra, A. K. (2023). Biofilm and metallothioneins: A dual approach to bioremediate the heavy metal menace. Environmental Quality Management, 33(4), 659–676. https://doi.org/10.1002/tqem.22139

Ryan, M. P., Sevjahova, L., Gorman, R., & White, S. (2022). The emergence of the genus Comamonas as important opportunistic pathogens. Pathogens, 11(9), 1032. https://doi.org/10.3390/pathogens11091032

Saravanan, A., Senthil Kumar, P., Srinivasan, S., Jeevanantham, S., Kamalesh, R., & Karishma, S. (2022). Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. Chemosphere, 290, 133295. https://doi.org/10.1016/j.chemosphere.2021.133295

Sari, A., & Tuzen, M. (2008). Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 160(2-3), 349-355. https://doi.org/10.1016/j.jhazmat.2008.03.005

Senanu, L. D., Kranjac-Berisavljevic, G., & Cobbina, S. J. (2023). The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology & Innovation, 103005. https://doi.org/10.1016/j.eti.2023.103005

Sharma, P. & Mutnuri, S. (2019). Nutrient recovery and microbial diversity in human urine fed microbial fuel cell. Water Science and Technology, 79(4), 718-730. https://doi.org/10.2166/wst.2019.089

Sonmez, E., Avci, B., Mohamed, N., & Bermek, H. (2024). Investigation of performance losses in microbial fuel cells with low platinum loadings on air-cathodes. The European Chemistry and Biotechnology Journal, 1, 11-26. https://doi.org/10.62063/ecb-14

Stafiej, K. P. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology, 49-52. https://doi.org/10.1016/j.seppur.2007.07.008

Sukkasem, C. (2024). Exploring biofilm-forming bacteria for integration into BioCircuit wastewater treatment. The European Chemistry and Biotechnology Journal, 2, 39–52. https://doi.org/10.62063/ecb-28

Sun, M., Mu, Z.-X., Chen, Y.-P., Sheng, G.-P., Liu, X.-W., Chen, Y.-Z., Zhao, Y., Wang, H.-L., Yu, H.Q., Wei, L., & Ma, F. (2009). Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environmental Science & Technology, 43(9), 2941-2947

Tamjidi, S., Esmaeili, H., & Kamyab Moghadas, B. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: A review study. Materials Research Express, 6(10), 102004. https://doi.org/10.1088/2053-1591/ab3ffb

Tao, H. C., Zhang, L. J., Gao, Z. Y., & Wu, W. M. (2011). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102(22), 10334-10339. https://doi.org/10.1128/AEM.70.9.5373-5382.2004

Tchobanoglus, G., Burton, F., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. American Water Works Association. Journal, 95(5), 201.

Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A Review. Separation and Purification Technology, 224, 373–387. https://doi.org/10.1016/j.seppur.2019.05.040

Van der Bruggen, B. (2015). Advances in electrodialysis for water treatment. In Advances in membrane technologies for water treatment. Woodhead Publishing. 185-203. https://doi.org/10.1016/ B978-1-78242-121-4.00006-X

Varnava, C. K., Persianis, P., Ieropoulos, I., & Tsipa, A. (2024). Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: Pyocyanin production as electron shuttle. Bioprocess and Biosystems Engineering, 47(4), 903–917. https://doi. org/10.1007/s00449-024-02903-7

Venkidusamy, K., & Megharaj, M. (2016). A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2 exhibits hydrocarbonoclastic potential in anaerobic environments. Frontiers in Microbiology, 7, 1071. https://doi.org/10.3389/fmicb.2016.01071

Villaescusa, I., Fiol, N., Martinez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38 (4), 9921002. https://doi.org/10.1016/j.watres.2003.10.040

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in Soil Environments. Journal of Soil Science and Plant Nutrition, 10(3). https://doi.org/10.4067/s0718-95162010000100005

Wang, G., Huang, L., & Zhang, Y. (2008). Microbial fuel cells for cathodic reduction of hexavalent chromium [Cr (VI)] and simultaneous electricity generation. Biotechnology Letters, 30, 19591966. https://doi.org/10.1007/s10529-008-9792-4

Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

Wang, J., Song, X., Wang, Y., Abayneh, B., Ding, Y., Yan, D., & Bai, J. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697-702. https://doi.org/10.1016/j.biortech.2016.09.116

Wang, W., Chen, M., Guo, L., & Wang, W.X. (2017). Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary. Science of The Total Environment, 603-604, 434–444. https://doi.org/10.1016/j.scitotenv.2017.06.121

Wang, Z., Hu, Y., Dong, Y., Shi, L., & Jiang, Y. (2023). Enhancing electrical outputs of the fuel cells with Geobacter sulfurreducens by overexpressing nanowire proteins. Microbial Biotechnology, 16(3), 534–545. https://doi.org/10.1111/1751-7915.14128

Wang, Z., Lim, B., & Choi, C. (2011). Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology, 102, 6304-6307. https://doi.org/10.1016/j.biortech.2011.02.027

WHO. (2017). Guidelines for drinking-water quality fourth edition incorporating the first addendum. Who chronicle, 38(4), 104-108.

Xia, J., Duan, Q.Y., Luo, Y., Xie, Z. H., Liu, Z.Y., & Mo, X.G. (2017). Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 8(2), 63–67. https://doi.org/10.1016/j.accre.2017.03.007

Xiang, H., Min, X., Tang, C. J., Sillanpää, M., & Zhao, F. (2022). Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering, 49, 103023. https://doi.org/10.1016/j.jwpe.2022.103023

Xu, H., Chen, Y., Wen, Q., Lin, C., Gao, H., Qiu, Z., Yang, L., & Pan, X. (2023). The role of binary transition metal Cobalt-Nickel sulfide as an anode catalyst in specifically selection of Desulfuromonas and improved performance of microbial fuel cell. Chemical Engineering Journal, 470, 144163. https://doi.org/10.1016/j.cej.2023.144163

Xu, T., & Huang, C. (2008). Electrodialysis-based Separation Technologies: A critical review. AIChE Journal, 54(12), 3147–3159. https://doi.org/10.1002/aic.11643

Yang, K., Miao, G., Wu, W., Lin, D., Pan, B., Wu, F., & Xing, B. (2015). Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere, 138, 657-663. https://doi.org/10.1016/j.chemosphere.2015.07.061

Yang, S., Wu, Y., Aierken, A., Zhang, M., Fang, P., Fan, Y., & Ming, Z. (2016). Mono/ competitive adsorption of arsenic(III) and nickel(II) using modified green tea waste. Journal of the Taiwan Institute of Chemical Engineers, 60, 213-221. https://doi.org/10.1016/j.jtice.2015.07.007

Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from Aqueous Solutions: A critical review. Chemical Engineering Journal, 366, 608–621. https://doi.org/10.1016/j.cej.2019.02.119

Yanuka-Golub, K., Reshef, L., Rishpon, J., & Gophna, U. (2020). Specific Desulfuromonas strains can determine startup times of microbial fuel cells. Applied Sciences, 10(23), 8570. https://doi.org/10.3390/app10238570

Zhang, B., Zhao, H., Shi, C., Zhou, S., & Ni, J. (2009). Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 84, 1780-1786. https://doi.org/10.1002/jctb.2244

Zhang, C., Lu, H., & Hu, Z. (2023). Electricity production by Ochrobactrum-related strain CD-1 and Pb2+ removal in dual-chamber microbial fuel cell. Global NEST Journal, 25(7), 18-24. https://doi.org/10.30955/gnj.005083

Zhang, J., Cao, X., Wang, H., Long, X., & Li, X. (2020). Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell. Ecotoxicology and Environmental Safety, 192, 110314. https://doi.org/10.1016/j.ecoenv.2020.110314

Zhang, P., Liu, Y., Fu, M., Wang, B., Ding, S., Ma, X., Zhang, X., & Shen, Z. (2024). Meta-analysis on the global prevalence of Arcobacter in food-producing animals and humans. One Health Advances, 2, 13. https://doi.org/10.1016/j.onehad.2024.100013

Zhang, X., Liu, Y., Li, C. (2021).Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell, Environmental Science and Pollution Research, 28(38), 5417054176. https://doi.org/10.1007/s11356-021-15889-w

Downloads

Published

25.01.2025

How to Cite

Akagunduz, D., Aydin, O., Tuncay, E., & Bermek, H. (2025). Microbial fuel cells: A potent and sustainable solution for heavy metal removal. EUCHEMBIOJ Reviews, 1(1), e25004. https://doi.org/10.62063/rev-6

Issue

Section

Review